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Abstract—The Internet of Audio Things (IoAuT) is an emerg-
ing research field positioned at the intersection of the Internet
of Things, sound and music computing, artificial intelligence,
and human–computer interaction. The IoAuT refers to the
networks of computing devices embedded in physical objects
(Audio Things) dedicated to the production, reception, analysis,
and understanding of audio in distributed environments. Audio
Things, such as nodes of wireless acoustic sensor networks, are
connected by an infrastructure that enables multidirectional com-
munication, both locally and remotely. In this article, we first
review the state of the art of this field, then we present a vision
for the IoAuT and its motivations. In the proposed vision, the
IoAuT enables the connection of digital and physical domains by
means of appropriate information and communication technolo-
gies, fostering novel applications and services based on auditory
information. The ecosystems associated with the IoAuT include
interoperable devices and services that connect humans and
machines to support human–human and human–machines inter-
actions. We discuss the challenges and implications of this field,
which lead to future research directions on the topics of privacy,
security, design of Audio Things, and methods for the analysis
and representation of audio-related information.

Index Terms—Auditory scene analysis, ecoacoustics, Internet
of Audio Things (IoAuT), Internet of Sounds, smart city.

I. INTRODUCTION

THE PARADIGM of the Internet of Things (IoT) refers to
the augmentation and interconnection of everyday phys-

ical objects using information and communication technolo-
gies [1]–[3]. Recent years have witnessed an upsurge in IoT
applications intersecting the areas of sound and music com-
puting and semantic audio (see [4]–[6]). However, to date, the
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application of IoT technologies in audio contexts has received
remarkably little attention compared to other domains, such as
consumer electronics, healthcare, and geospatial analysis.

This article aims at creating a homogeneous and unified
vision of the various efforts conducted in this domain, that
we coin as the Internet of Audio Things (IoAuT). On the
one hand, the creation of this vision strongly parallels similar
efforts in the emerging field of the Internet of Musical Things
(IoMusT) [7], where a number of devices for music produc-
tion and consumption are connected within ecosystems that
multiply possibilities for interactions between different stake-
holders (including performers, audience members, and studio
producers). On the other hand, this vision complements and
extends IoMusT outlining requirements, applications, chal-
lenges, and opportunities that go well beyond the domain of
music. In the specific context of this article, we highlight the
difference between the terms “music,” “audio,” and “sound.”
With music, we exclusively refer to the musical stimuli, with
audio we refer solely to the domain of the nonmusical audi-
tory stimuli, whereas with sounds we intend the union of
both music and audio. Consequently, we envision different
IoT technologies and methods that address each of them.

First, we survey the existing technologies developed by
practitioners across fields related to the IoAuT as proposed
in this article. Second, we present a vision for the IoAuT and
its motivations. We introduce the IoAuT as a novel paradigm
in which smart heterogeneous objects (so-called Audio Things)
can interact and cooperate between each other and with other
smart objects connected to the Internet. The aim is to foster
and facilitate audio-based services and applications that are
globally available to users. Then, we reflect on the peculiari-
ties of the IoAuT field, highlighting its unique characteristics
in contrast to the IoT and IoMusT. Finally, we discuss the
implications and challenges posed by the vision as well as we
consider future directions.

Our focus is on technologies enabling the IoAuT as well
as on current IoAuT research activities, drawing attention to
the most significant challenges, contributions, and solutions
proposed over the recent years. The result of our survey of the
field reveals that at present, active research on IoAuT-related
themes is rather fragmented, typically focusing on individual
technologies or single application domains in isolation. Ad hoc
solutions exist that are well developed and substantial, but their
adoption remains low due to the issues of fragmentation and
weak interoperability between existing systems. Such a frag-
mentation is potentially detrimental for the development and
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successful adoption of IoAuT technologies, a recurring issue
within the more general IoT field [1]–[3]. As a consequence,
this article not only seeks to bridge existing research areas
and communities and foster cross-collaborations but also aims
to ensure that IoAuT-related challenges are tackled within a
shared, pluralist, and system-level perspective.

We believe that the IoAuT has the potential to foster
new opportunities for the IoT industry, paving the way to
new services and applications that are able to exploit the
interconnection of the digital and physical realms, especially
in the smart home [8] and smart city context [9]. Nevertheless,
for IoAuT technologies to emerge and be adopted by end users,
a number of technical and human interaction-related challenges
need to be addressed. These include low-latency communication
infrastructures and protocols, embedded IoT hardware special-
ized for audio, dedicated application programming interfaces
(APIs), and software relying on specific ontological principles
and semantic audio processes [10], [11], as well as the design
of novel devices dedicated to audio analysis, production or con-
sumption, employing appropriate signal processing, machine
learning, deep learning, and artificial intelligence technologies.
This article aims to identify and discuss the challenges arising
in this novel vision of the IoAuT.

II. INTERNET OF AUDIO THINGS: CONCEPT AND VISION

The IoAuT is an emerging field positioned at the
intersection of IoT [1]–[3], human–computer interaction [12],
[13], and artificial intelligence applied to audio contexts [14].
The IoAuT can be seen as a specialization of the IoT, where
one of the prime objectives is to enable processing and trans-
mission of audio data and information. The IoAuT enables the
integration and cooperation among heterogeneous devices with
different sensing, computational, and communication capa-
bilities and resources. We clarify that in the context of the
IoAuT, sensing is not only referred to audio signals via micro-
phones but also to other sources providing quantities tracked
by sensors, for instance, measuring vibrations or pressure
variations.

We define an Audio Thing as “a computing device capable
of sensing, acquiring, processing, actuating, and exchang-
ing data serving the purpose of communicating audio-related
information.” With “audio-related information” we refer to
“data sensed and processed by an Audio Thing, and/or
exchanged with a human or with another Audio Thing.”
We define the IoAuT as “the ensemble of interfaces, proto-
cols, and representations of audio-related information that
enable services and applications for the communication of
audio-related information in physical and/or digital realms.”

The IoAuT may be structured into ecosystems, just like the
general IoT domain [15], [16]. An IoAuT ecosystem forms
around commonly used IoAuT hardware and software plat-
forms as well as standards. From the technological perspective,
the core components of an IoAuT ecosystem are of three types.

1) Audio Things: Audio Things are entities that can be used
to produce audio content or to analyze phenomena asso-
ciated with auditory events, and can be connected to a
local and/or remote network and act as a sender and/or

a receiver. An Audio Thing can be, for example, a node
in a wireless acoustic sensor network (WASN), a device
responding to a user’s gesture with auditory feedback,
or any other networked device utilized to control, gen-
erate, or track responses to auditory content (see the
examples of Audio Things used in the systems described
Section III). We position Audio Things as a subclass of
things, therefore they inherit characteristics of things in
the IoT context, such as sensors, actuators, connectivity
options, and software to collect, analyze, receive, and
transmit data.

2) Connectivity: The IoAuT connectivity infrastructure
supports multidirectional wired and wireless com-
munication between Audio Things, both locally and
remotely. The interconnection of Audio Things over
local networks and/or Internet is achieved by the means
of hardware and software technologies, as well as
standards and protocols governing the communication.

3) Applications and Services: Various types of applications
and services can be built on top of the connectivity, tar-
geting different users according to the purpose of the
Audio Things (e.g., human agents monitoring events,
patients, and doctors). Such applications and services
may have an interactive or a noninteractive nature. To
establish interactive audio applications, real-time com-
putations have particular importance. Analogously to the
IoT field, the IoAuT can leverage Web APIs and Web-
of-Things architectures [17]. Services can be exposed
by Audio Things via Web APIs. Applications are part
of a higher layer in the Web of Audio Things architec-
ture letting users interact with content or Audio Things
directly.

Fig. 1 depicts the main components of an architecture sup-
porting IoAuT ecosystems. The data flow can be grouped
into: 1) streams from the Audio Things, which includes audio
streams and messages consisting of features extracted from
the audio signals captured by the Audio Thing’s microphones
or other sensors producing audio signals like measurement
streams and 2) audio streams arriving to the Audio Thing that
are rendered as sounds by means of loudspeakers, as well as
control messages governing the behavior of the Audio Thing.
An example of the first type of data flow is represented by
the data produced by nodes of WASNs (which typically have
limited or no capability of receiving feedback messages). An
example of the second type of data flow is the messages sent
by a remote doctor to the smart sonic shoes described in [5].

A. Relation to Other Fields

The IoAuT has strong connections with and could be seen
as a subfield of the Internet of Media Things (IoMT), which is
defined as a network of things capable of sensing, acquiring,
actuating, or processing media or metadata [18]. This is cur-
rently under exploration by MPEG.1 We consider the IoAuT as
a subfield of the IoMT (which in turn is a subfield of the IoT)
and we position it at the intersection with the IoMusT (see

1ISO/IEC 23093 (IoMT): https://mpeg.chiariglione.org/standards/mpeg-
iomt
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Fig. 1. Schematic representation of an architecture supporting IoAuT ecosystems.

Fig. 2. Schematic representation of the relation between the IoAuT and the
fields of IoT, Internet of Multimedia Things (IoMT), and IoMusT.

Fig. 2). The IoAuT differentiates from the IoMT for its focus
on audio applications, whereas the IoMT also deals with other
multimedia aspects, such as video. Similar to what the Web of
Things2 represents for the IoT, we use the term Web of Audio
Things to refer to approaches taken to provide an application
layer that supports the creation of IoAuT applications.

In contrast to the IoT, the IoAuT may pose stringent require-
ments and challenges related to the collection, analysis, and
communication of audio-related information. For instance, a
distributed array of microphones in a WASN might need to
be synchronized tightly with low-latency communications to
detect audio events in real time. Current IoT protocols and
systems are insufficient to tackle this challenge. Along the
same lines, the IoAuT demands novel analytic tools spe-
cific to the audio domain, which should be able to process
large amounts of audio-related data and extract meaningful
information given tight temporal constraints (e.g., for moni-
toring or surveillance purposes) and pose specific challenges

2https://www.w3.org/WoT/

in the areas of real-time signal processing and machine learn-
ing (see Sections IV-C and IV-F). In the same vein, current
data models devised for the representation of the IoT domain
are not adequate to describe the knowledge related to IoAuT
ecosystems, which has the potential to foster interoperability
across heterogeneous Audio Things.

It is important to highlight the distinctive features of the
IoAuT with respect to the IoMusT.

1) The IoAuT does not have musical purposes, whereas the
focal points of the IoMusT are live music performance,
music pedagogy, studio productions and, in general,
interactions between specific stakeholders, such as per-
formers, composers, audience members, and studio pro-
ducers. The purposes of stakeholders in the IoMusT are
radically different from those of the stakeholders of the
IoAuT. Music is a creative activity, and creativity is an
aspect that is scarcely addressed in the IoAuT. As a con-
sequence, most of the implications and challenges of the
two fields are different (e.g., requirements of ultralow-
latency transmission of musical content to guarantee
credible interactions between performers). Nevertheless,
some applications lie at the intersection of the two fields
(see [19] where a wearer of a sensor-equipped garment
could interact with an online repository of audio content,
in a musical performance context).

2) The IoMusT is not a subfield of the IoAuT because,
according to the vision reported in [7], the IoMusT
is inherently multisensory, encompassing haptic feed-
back and virtual reality as communication media that
extend the musical layer. Conversely, the IoAuT deals
exclusively with the audio signal.

3) The level of human involvement is generally differ-
ent in the two fields. First, whereas almost all audio
signals within the IoMusT are generated or ultimately
used by humans, IoAuT applications can make use of
audio signals not related to human activities (e.g., mon-
itoring environmental sounds such as birds). Second,
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in the IoMusT, most of the times, a human listener
is involved in the interactions of the technology with
the sonic content (e.g., the audience member enjoys the
music of performers remotely connected; the music stu-
dent listens to classes technologically mediated by smart
instruments; the studio producer listens to the content
retrieved from cloud-based repositories). Conversely, in
several IoAuT applications (e.g., traffic monitoring and
surveillance), the listening aspect performed by humans
can be absent for the technology to work, and a system
may completely rely on automatic processes.

4) The IoAuT may encompass activities, processes, appli-
cations, and services that are not present or are radi-
cally different in the IoMusT. For instance, sonification
processes are normally absent in the IoMusT (e.g., the
sonification [20] of human movements for rehabilita-
tion purposes). Conversely, creative aspects typical of
the IoMusT contrast with objective measurements that
characterize most of IoAuT systems and applications.
In addition, the context around the IoMusT stakeholders
is different from the one that is around IoAuT stake-
holders or the one used by them (e.g., environmental
sounds of a city), and context-aware systems [21] may
be radically diverse in the two fields. This necessarily
involves different ontologies to represent the underlying
knowledge as well as algorithms for context reasoning.
Along the same lines, proactive services based on such
context-aware systems are also diverse.

5) The quality of service for IoMusT applications may rad-
ically differ from those in the IoAuT. In the IoAuT, some
nodes and/or sensors may be inactive for long periods
of time, yet a system remainds operational, whereas,
in the IoMusT, it is essential that each node, sensor,
or actuator is running perfectly during user interaction.
Also, in the IoAuT, the network may be utilized for
very long periods of time (e.g., a WASN deployed in a
smart city may run uninterruptedly for several months
or years), whereas in the IoMusT, it is typically utilized
to ensure the stakeholder interactions with the desired
musical content (e.g., remote performances may last a
few hours).

6) In the IoMusT, the audio signals need to be captured
and reproduced in high quality to ensure credible musi-
cal interactions between stakeholders. In the IoAuT, this
stringent constraint may not hold true for some systems
and applications. For instance, some nodes in WASNs
involved in surveillance applications embed low-cost
microphones and analog-to-digital converters, which
may have much lower sampling rates and resolutions.

7) The typical application of artificial intelligence also dif-
fers between the two fields. In the context of IoMusT,
it is more common for AI technologies to be directly
embedded in a single musical thing or a relatively
restricted number of musical things, which have to
extract, process, or transmit semantic metadata related to
a musical audio signal. In the envisioned IoAuT context,
it is typically expected that AI has to extract and process
information obtained several from spatially distributed

low-cost sensors, although single or multisensor embed-
ded applications are also possible.

Besides the IoMusT, the IoAuT differentiates from other
related technological areas present in the audio domain.

1) WASNs: Current WASNs typically employ embedded
systems and network communication protocols not
specifically conceived for audio processing tasks [22],
which are instead key in the IoAuT. In addition, the
IoAuT differentiates from today WASNs paradigms for
the extensive use of semantic audio methods [11] able
to extract structured meaningful information from the
captured audio signal.

2) Sonification: The field of sonification [20] typically does
not focus on networked scenarios involving embedded
systems, where information to be sonified or resulting
from the sonification activity is communicated across
devices. In the IoAuT, applications may comprise the
extension of traditional sonification methods toward
networked scenarios, especially involving embedded
systems.

3) Semantic Audio: The field of semantic audio [11] has
rarely found application in IoT contexts dealing with the
audio signal, and this is particularly true for the nonmu-
sical domain. Typically, it does not focus on embedded
systems, which are at the heart of the IoAuT. In the
IoAuT, semantic audio methods are useful for advanced
interoperability purposes across heterogeneous Audio
Things.

4) Embedded Audio: Current embedded systems specific
to audio processing offer a little range of connectivity
options and scarce hardware–software methods sup-
porting advanced machine learning algorithms. In the
IoAuT vision, the connectivity component of embed-
ded systems is crucial to devise advanced applications
leveraging edge computing techniques while seamless
accounting for privacy and security aspects.

Whereas the IoAuT stems from the technologies and
paradigms listed above, it differentiates from them for a
broader and holistic vision able not only to encompass all
of them in a unified domain but also to extend them toward
novel avenues. In the next section, these aspects are discussed
in relation to the state of the art.

III. STATE OF THE ART

This section reviews key studies on which our IoAuT vision
is based.

A. Wireless Acoustic Sensors Networks

One of the most compelling and important extensions of the
IoT to the audio domain is represented by wireless acoustic
sensors networks (WASNs) [22], [23]. These are networks of
tiny and low-power autonomous nodes that are equipped with
microphone-based sensing, processing, and communicating
facilities. Such nodes are based on embedded audio platforms,
i.e., embedded systems dedicated to digital audio processing
(see the Bela board [24]), where a variety of audio software
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runs on single-board computers, such as the Raspberry Pi or
the Beaglebone [25].

Network architectures can be considered depending on the
task at hand and the technical and ethical constraints that
may be encountered (see [26] for a thorough discussion). One
of the most typical application domain of WASNs is that of
acoustic monitoring or acoustic scene analysis [14], [27]–[30],
including urban noise pollution monitoring [31], environment
surveillance (see [32]), anomalies detection [33], and wildlife
monitoring [34]. For the last case, the WASN paradigm leads
to the emergence of a new disciple called ecoacoustics [35]
where scientists go beyond the single animal call analysis
to gather statistics computed over large scale both in time
and space [36], particularly relevant for ecosystems health
monitoring.

A prominent example of WASNs for acoustic monitoring
of urban areas is SONYC, a system that integrates sensors,
machine listening, and data analytics to monitor and analyze
urban noise pollution in New York [6], [30], [37]. Another
kind of network implementations is also considered in var-
ious other places in the world. In Germany, the Stadtlaerm
project [38], [39] aims at triggering events from a given taxon-
omy provided the input signal received by the sensors. Events
can be “traffic,” “shouting,” etc. In that case, the complete
processing chain is implemented on the sensor node, namely,
recording, analysis, and classification. The main benefit of this
type of architecture is that the data to be transmitted from
the sensors to the servers has a very low bit rate and can be
directly interpreted by humans. Some drawbacks are present.
First, each processing step has to be energy efficient since it
is embedded in the sensor. For the same reasons, modifying
the processing chain, for example, updating the taxonomy of
events, can be cumbersome as it requires a complete update of
the embedded software. The DYNAMAP project [40] studies
the development of such a network in two major cities in Italy.
In France, the CENSE project focuses on the deployment of
dense networks that transmit high-level spectral features [4],
[41] which are designed to: 1) respect the privacy of the
citizen [26] and 2) permit a quality of the description of
the sound scene that goes well beyond the use of averaged
acoustic pressure level that is commonly considered for those
applications [42].

When considering WASN for urban areas monitoring, three
main components are of importance to gain knowledge from
the data gathered. First, the microphones shall be well cali-
brated and durable. Since most WASN are based on the “many
but low cost” paradigm, the microphones must be relatively
cheap. MEMS capsules, such as the ones used in smartphones
are a relevant choice, although their durability for long time
periods remains unknown [43].

Second, the sensors shall be reliable enough in order
to obtain regularly sampled data in time and space
[31], [44], [45]. Designing the topology of the network is
also of crucial importance and needs to balance many con-
straints that are enforced by urban regulations [46]. Most
WASNs are static, meaning that the sensors are not moving
but some alternatives are considered, for example, by tak-
ing into account buses [47] and more importantly considering

smartphones [48]–[61]. The latter case is particularly tempt-
ing, as the sensors are densely present in urban areas. However,
the quality of the data has to be questioned as in any crowd-
sourcing paradigm [62], for instance, because the calibration
of the microphone is of great importance for noise map-
ping applications [63]–[66]. Along the same lines, unmanned
aerial vehicles (such as drones) also represent an opportunity
for moving acoustic sensing. Recent examples of the use of
these technologies include applications for search and rescue
scenarios [67] and for ecoacoustic monitoring [68]. It is plau-
sible to hypothesize that in the future drone-based networks
will emerge, which leverage the acoustic information for
surveillance, environment monitoring, and related applications.

Third, the gathered data shall be filtered [69], mined, and
displayed [70]. For this purpose, data management systems
need to be deployed [71], [72] and skillfully used. This final
step is nontrivial and is currently researched extensively. It is
mandatory to select relevant data to motivate given actuation.
The challenge here is that the data analyst shall be able to
mine a large amount of data that is diverse in terms of content
and structure both in space and time [73].

Most large-scale WASNs do not consider the acoustic rela-
tions between the audio content captured at different nodes,
which, for instance, can be exploited for source localiza-
tion. Nevertheless, for smaller scale WASNs, or for more
advanced nodes, source localization (single or multiple) can
be performed using various techniques and algorithms (see
[74]–[80]).

B. Sonification and the Internet of Things

A handful of works have explored the use of sonifica-
tion techniques in conjunction with the IoT. Sonification is
essentially a technique that consists of the transformation of
data into sounds [20]. Sonification is referred to as the use
of nonspeech audio to convey information. More specifically,
sonification is the transformation of data relations into per-
ceived relations in an acoustic signal for the purposes of
facilitating communication or interpretation [81].

The first example of this category of works is the one
reported in [82]. The authors sonified the electricity consump-
tion of various appliances in the home, which were enhanced
with a device able to monitor the amount of electricity used
and were equipped with wireless connectivity to a base unit.
This system aimed at enhancing users’ awareness of electricity
consumption for sustainability purposes.

A second example is represented by the work reported
in [83] within the context of the so-called “Industry 4.0.”
Bederson [84] developed a preliminary prototype of a
sonification-based system for acoustic monitoring of manufac-
turing processes and production machines, using the approach
of “auditory augmented reality.” The system uses an array of
microphones placed onto a production machine (such as a 3-D
printer) and is able to detect normal states or anomalies of
the manufacturing process from the sound of the monitored
machine. The classification of these states is based on machine
learning algorithms running on a remote cloud, the result of
which is communicated as continuous auditory stimuli to a
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Fig. 3. Schematic representation of the local and remote interactions enabled by the system reported in [5].

worker operating near the machines, thanks to a wireless link
to the connected headphones.

A third example is reported in [5], where a pair of smart
sonic shoes is connected to the Internet to explore novel
forms of sound-based motor therapies. This article is posi-
tioned in the context of remote patient monitoring [85], and
more specifically, is conceived for telerehabilitation of motor
disabilities [86]. As opposed to the previous two systems
described in this section, such a work uses the approach of
interactive sonification [87], which deals with the involvement
of dynamic human interaction in the generation or exploration
of information transformed into sound. The described proto-
type of smart sonic shoes is able to transform each footfall into
a sound simulating walking on various surface materials [88],
can collect data about the gait of the walker, as well as its
sound production can be controlled via a remote doctor (see
Fig. 3). The purpose of these shoes is to guide and improve
walking actions in rehabilitation contexts due to the ability of
sound to modulate the gait of a person (see [89]–[92]). The
use of this portable device could enable patients to perform
sound-based rehabilitation exercises while being comfortable
in their homes. Patients and their families could be provided
with cost-effective tools to autonomously monitor the progress
of therapy. Doctors could be enabled to remotely monitor
each patient and control the sonic feedback at each exercise.
This has the potential to prevent patients to visit frequently
the hospital by decreasing the cost for both patients and
hospitals.

C. Auditory Augmentation of Connected Objects

Researchers have also focused on the sonic augmentation of
everyday objects by means of tangible devices equipped with
motion sensors, microphones, speakers, and wireless connec-
tivity. A notable example in this category is StickEar [93], a
small device attachable to an object, which encompasses the
wireless sensor network technology and enables sound-based
interaction. The device was conceived to empower people
with the ability to deploy acoustic tags on any objects or
space, and be informed of acoustic cues that may be produced
by an object or a location. Applications of this device with
sound-based input/output capabilities include remote sound
monitoring, remote triggering of sound, autonomous response
to sound events, and controlling of digital devices using sound.

D. Acoustic Data Transmission

Recent years have witnessed the emergence of the tech-
nology of device-to-device acoustic data transmission, which
provides a means of proximity communication between co-
located devices as an alternative to more widespread and
common solutions such as electromagnetic communications.
In more detail, information to be transmitted is encoded into
inaudible ultrasonic sound waves that can be picked up by
conventional microphones (which enables the adoption of this
technology into portable solutions such as smartphones run-
ning dedicated apps). The nature of the information can range
from text messages to images, and the technology could be
used for payment transfers, user authentication, and smart city
applications such as digital locks. At present, two main compa-
nies are leading such technological developments, Chirp3 [94]
and Trillbit.4 Various online documents refer to this technol-
ogy as an enabler for an Internet of sounds, envisioning it as
a standard for IoT communications given the scalability of the
solution.

E. Semantic Audio

Semantic audio is an interdisciplinary field providing tech-
niques to extract structured meaningful information from
audio [11]. It typically goes beyond simple case-specific audio
analyses, for instance, the detection of a single type of event
in an audio stream, as well as more complex audio feature
extraction, classification, or regression problems. It does so
by combining signal analysis to extract quantifiable acoustic
features from audio, machine learning techniques to map
acoustic features to perceptually, environmentally, or musi-
cally meaningful features, and structured representations that
place these features into possibly multirelational or heteroge-
neous hierarchies [10], [95] using, for example, semantic Web
ontologies [96].

Semantic audio is a core concept in the IoAuT because
it provides the means for both analyzing and understanding
the content of audio streams or recordings as well as com-
municating this information between Audio Things. These
devices are typically situated in complex distributed envi-
ronments, consisting, for instance, of networks of standalone
sensors, embedded systems in mobile sensing and communica-
tion devices, as well as data and control centers. This creates

3https://chirp.io/
4https://www.trillbit.com/
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the need for complex and versatile yet interoperable audio
analysis and representation techniques which is at the heart of
semantic audio.

There are relevant examples of systems relying on seman-
tic audio. For instance, the Audio Commons ecosystem [97]
provides a mechanism to combine generic audio and con-
tent repositories within creative application scenarios [19],
[98]–[102] that include sounds collected from the broader
environment. A key concept in these systems is the com-
bination of the two primary aspects of semantic audio: 1)
machine analysis and automatic tagging of content and 2) its
representation in an appropriate semantic hierarchy for inter-
operability [10], [103]. Tagging comes with its own challenges
owing to noisy annotations in relevant labeled data sets, lack
of temporal accuracy in the annotations, i.e., often only weakly
labeled data are available, as well as the presence of multiple
sound sources in an audio stream or recording [104]–[106].

Detection is followed by annotation within a semantic
hierarchy that supports efficient communication and interop-
erability. This requires a shared conceptualization of low-
to high-level acoustic features, as well as meaningful labels
across different audio-related domains. Several ontologies have
been proposed for these purposes, including those for audio
features [107], effects and transformations [108], mobile sens-
ing in the audio context [109], as well as ontologies that
bind complex workflows and signal routing in audio process-
ing environments [110] and ontologies that bind distributed
content repositories together [103].

F. Web-Based Digital Audio Applications

The Web Audio API is one of the most recent among the
technologies for audio applications on the Web and its use is
becoming increasingly widespread [111]. It enables real-time
sound synthesis and processing on Web browsers simply by
writing the JavaScript code. It represents a promising basis
for the creation of distributed audio applications such as those
envisioned in the IoAuT. Different from Java or Flash, which
are implemented in the form of browser plugins, the Web
Audio API is implemented by the browser itself. Moreover,
the Web Audio API is a World Wide Web Consortium (W3C)
proposed standard.5

Recently, Web Audio technologies have been employed in
embedded systems, thus bridging the realm of smart objects
with that of audio applications leveraging the Web. An exam-
ple in this category is reported in [112]. The authors proposed
a preliminary system consisting of a network of nodes based
on the Raspberry Pi platform. Each node runs a Web Audio
application that could exploit a number of libraries previously
built for mobile-based applications (e.g., for synchroniza-
tion purposes [113]), with the purpose of implementing a
distributed architecture for musical performances.

Along the same lines, Skach et al. [19] proposed a system
that links Web-based digital audio technologies and embed-
ded audio. Their system consists of a sensor- and actuator-
equipped garment allowing for the interactive manipulation of
musical and nonmusical sounds retrieved from online sound

5https://www.w3.org/TR/webaudio/

Fig. 4. Schematic representation of the sensor- and actuator-equipped gar-
ment presented in [19], which interacts with the audio content repository
Freesound.org.

repositories. Specifically, the authors developed a jacket-
based and trousers-based prototype for body-centric sonic
performance, which allows the wearer to manipulate sounds
through gestural interactions captured by textile wearable sen-
sors. The data tracked by such sensors control, in real time,
audio synthesis algorithms working with content downloaded
from Audio Commons,6 a Web-based ecosystem for repurpos-
ing crowd-sourced audio such as the Freesound.org7 repository
(see Fig. 4). The prototype enables creative embodied inter-
actions by combining e-textiles with Web-based digital audio
technologies.

To date, a number of promising projects have demon-
strated how audio-based applications can be bridged into
the Web browser via the Web Audio API. A large amount
of these projects have focused on the musical domain (see
[114]–[116]). A noticeable exception is represented by the
FXive project [117], an online real-time sound effect synthesis
platform. Various algorithms are used to synthesize every-
day sounds, ranging from models for the contact between
objects [118] to models for footstep sounds [88]. FXive rep-
resents a service targeting designer of sound effects, with the
aim of replacing the need for reliance on sound effect sample
libraries in the sound design. Designers of sound effects rather
than searching for sound libraries and attempting to modify
the retrieved sound samples to fit a desired goal, can directly
shape their sounds by using the online service.

IV. CHALLENGES

The IoAuT inherits many challenges of the general field
of IoT (see [119]). In addition to these, the practical real-
ization of the envisioned IoAuT poses specific technological
and personal data-related challenges. The realization of the

6http://audiocommons.org
7http://freesound.org
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IoAuT vision described in Section II occurs through the evo-
lution of the network and services’ infrastructure as well as
of the capabilities of Audio Things connecting to them. We
identify eight areas that currently hinder many interesting
IoAuT application scenarios: 1) connectivity; 2) interoperabil-
ity and standardization; 3) machine analysis of audio content;
4) data collection and representation of audio content; 5) edge
computing; 6) synchronization; 7) privacy and security; and
8) Audio Things design.

A. Connectivity

Communication based on audio-related information may
pose stringent requirements and challenges, which is why
many of the general-purpose protocols designed for the IoT
may not be appropriate or feasible for the IoAuT. Distributed
audio sensors may require low-delay communications for real-
time monitoring and processing [120]. This is the case of event
detection, such as crashes and accidents, which could be mon-
itored by distributed microphones that could also contribute to
the control of traffic lights and car speed in the neighboring
of the event. Moreover, in addition to low latency, the com-
munication network may have to support high data rates, such
as when the signal-to-noise ratios are low and signals will
have to be quantized with high resolution in order to extract
the desired information. In this regard, the use of mmWave
wireless communications could be an enabling technology
for IoAuT, because they potentially enable ultralow latency
and massive bandwidths at the physical layer of the wire-
less communications [121]. Audio applications will experience
latency at all layers of the protocol stack. Hence, many aspects
of communication systems will need to be reconsidered and
customized for audio transmission purposes.

IoAuT applications will likely generate large data sets,
which we will have to analyze in real time. Reliable auto-
matic speech recognition can now be performed [122] even
in a noisy environment. To achieve such impressive results,
machine learning needs big data sets and very large com-
putational and communication resources, especially for the
training tasks [123]. However, in IoAuT applications, data sets
of any size will be distributed among several nodes (peo-
ple, devices, objects, or machines) that might not be able
to time share data due to bandwidth or privacy constraints,
or may not have enough computational resources to run the
machine learning training tasks. Existing machine learning
methods and related algorithms are mostly intended for propri-
etary or high performing networks (e.g., in data centers), and
would greatly stress public communication networks, such as
IoT and 5-6G wireless networks [122], [124]. We expect that
the research community will have to address several funda-
mental advancements within machine learning over networks,
which will likely use ideas from active learning and distributed
optimizations over networks.

One major issue to apply machine learning over communi-
cation networks for the IoAuT is the fundamental bandwidth
limitations of the channels. The huge number of nodes and
their data sets’ transmissions may congest the practically
available bandwidth. The emerging technology of extremely

low-latency communications will rely on short packets that
carry a few bits [120]. The nodes generating audio data may
not have enough communication bandwidth to transmit data
to the place where it has to be analyzed, or simply not enough
computational power to perform local training and data anal-
ysis. A further problem is that the privacy and security are
key societal concerns. A malicious observer could reconstruct
a node’s (such as a person’s) private audio information, or
misuse the analysis of data belonging to others.

Finally, developing efficient communication protocols and
shared conceptualization of the information being distributed
is also important. For example, communication bandwidth may
be saved if IoAuT devices are able to communicate using short
and universally accepted identifiers to signal certain conditions
instead of complex (e.g., XML) data structures. This will be
discussed in the following sections in more detail.

Thus, we suggest that the design and deployment of alterna-
tive communication techniques and protocols together with the
audio machine learning tasks are necessary to target better per-
formances for the support of communication of audio-related
information over the IoAuT infrastructure.

B. Interoperability and Standardization

What emerges from the survey of the literature presented
in Section III is a picture of the IoAuT as a field rather
fragmented, where various authors have focused on single
technologies or single application domains. Such a fragmen-
tation hinders the development and successful adoption of the
IoAuT technologies. Standardization activities represent a cen-
tral pillar for the IoAuT realization as the success of the IoAuT
depends strongly on them. Indeed, standardization provides
interoperability, compatibility, reliability, and effective opera-
tions on both local and global scales. However, much of this
article remains unrealized. Whereas various ad hoc solutions
exist, their adoption is still low due to the issues of fragmen-
tation and weak interoperability. More standardized formats,
protocols, and interfaces need to be built in the IoAuT to pro-
vide more interoperable systems. This issue is also common
to the more general IoT field [125].

Within the IoAuT, different types of devices are used to
generate, detect, or analyze audio content, and need to be able
to dynamically discover and spontaneously interact with het-
erogeneous computing, physical resources, as well as digital
data. Their interconnection poses specific challenges, which
include the need for ad hoc protocols and interchange formats
for auditory-related information that have to be common to the
different Audio Things, as well as the definition of common
APIs specifically designed for IoAuT applications. Semantic
technologies, such as semantic Web [126] and knowledge rep-
resentation [127] can be envisioned as a viable solution to
enable interoperability across heterogeneous Audio Things.
However, to date, an ontology for the representation of the
knowledge related to IoAuT ecosystems does not exist.

A common operating system for Audio Things can be
considered as a starting point for achieving interoperability.
Recent technological advances in the field of the music tech-
nology have led to the creation of platforms for embedded
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audio that are suitable for IoAuT applications. To date, the
most advanced platform for embedded audio is arguably the
Elk Audio OS developed by Elk.8 Elk Audio OS is an embed-
ded operating system based on Linux. It uses the Xenomai
real-time kernel extensions to achieve latencies below 1 ms,
which makes it suitable for the most demanding of low-latency
audio tasks. It is highly optimized not only for low-latency and
high-performance audio processing but also for handling wire-
less connectivity to local and remote networks using the most
widespread communication protocols as well as ad hoc ones.
Recently, the operating system has integrated support for 5G
connectivity. Elk Audio OS is a platform independent, support-
ing various kinds of Intel and ARM CPUs. Thanks to these
features, Elk has the potential to become a standard for oper-
ating systems running on various kinds of embedded hardware
for the nodes of the IoAuT.

C. Machine Analysis of Audio Content

Traditionally described as acoustic pressure levels com-
puted over long time scales, audio is now considered in much
more detail in order to gather rich information of the sound
environment. While in this section, the focus will be put on
urban areas monitoring, it is worth noticing that the growing
field of ecoacoustics has also many challenges and potential
applications [106].

The recent availability of large amounts of recordings has
fueled research on the use of machine learning methods
to gather high-level information about the sound environ-
ment, particularly in urban areas [25]. A scientific community
emerged in 2010 to address this topic and the first Detection
and Classification of Acoustic Scene and Events challenge
was launched in 2013 [14], sponsored by the IEEE Acoustics,
Speech, and Signal Processing Society. As the name of the
challenge states, two levels of information are considered. One
at the time scale of the event, where precise timing detection is
required and the other at a longer time scale, where an abstract
description of the audio has to be predicted. The typology of
the predicted events and scene types is task dependent.

The acoustic scene classification task was originally tack-
led by considering probabilistic classification techniques based
on explicitly designed audio features [128]. Those approaches
have now been replaced by end-to-end deep learning meth-
ods [129], that tend to perform better and better as the volume
of available training data increases.

Nonnegative matrix factorization techniques are well suited
for the acoustic event detection task and methods based on
these techniques perform well [130]. With special care, deep
learning techniques also achieve state of the art results [131].
Due to the scarcity of training data for the acoustic event
detection task, considering data augmentation techniques often
mandatory [132].

New analytic tools are needed to make the most of the
IoAuT. Such tools should be able to process large amounts of
audio-related data and extract meaningful information given

8https://www.elk.audio

tight temporal constraints. Deep learning [133] offers encour-
aging ways to obtain high-level features that could capture the
nature of the event that generated the auditory content.

In this context, a substantial challenge is learning from
noisy [104], [134] and weakly labeled [135] data sets, which
are much more readily available. To this end, the development
of appropriate neural network architectures is ongoing work,
where the use of attention mechanisms [135], [136] provides
a promising direction.

In the envisioned IoAuT ecosystem, an Audio Thing may
possess multiple spatially distributed sensors which poses
another challenge. While deep learning applied to audio pro-
vides state of the art performance in many tasks and has
become a mature field of research, there is currently very
little attention to problems involving multiple audio sensors
while multisensor data processing and integration using deep
learning are in its infancy. This usually involves the use of
case-specific tricks or data fusion techniques [137], while the
system may also need to deal with imperfect time synchro-
nization in light of the issues discussed in Section IV-F. There
are network architectures capable of comparing audio signals
or processing them in a sequence (see [138]) but real-time
multisensor processing remains a challenge.

D. Data Collection and Representation of Audio Content

Several common challenges exist across the different audio
analysis methodologies mentioned in Section IV-C. These
include the problem that machine learning-based techniques
require large amounts of accurate training data that covers
most or all relevant use cases. This is a substantial problem
owing to both the expense and difficulty of collecting data, as
well as the difficulty of accurately annotating data.

For specific domains, such as an office environment, manual
data collection is feasible [14], [128]. This approach does not
necessarily scale however. The problem can be addressed using
crowdsourcing both content and annotation, as is the cases
of Freesound.org, which provides community created data
sets [139]. These are increasingly annotated within seman-
tic hierarchies [140] such as those provided by the AudioSet
ontology [141]. However, an accurate taxonomy, let alone
more complex multihierarchical relationships between sound
events are difficult to represent and to agree upon by multiple
annotators. This is a challenge in part because many exist-
ing representations follow a single hierarchical tree structure,
while in the real world, graph-structured complex relation-
ships are much more common and potentially more useful. A
comprehensive ontology that addresses this issue is yet to be
developed.

E. Edge Computing

State of the art deep learning models achieve remark-
able performance and are being widely used in multimedia
systems [131], [142]–[145]. Many of these models can have
tens of millions of parameters (e.g., AlexNet [146]), to achieve
such high performance. However, the realization of the IoAuT
demands applying these heavy models to cheap sensor devices.
Limited computational and energy resources prohibit the use
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of heavy training and/or inference algorithms [147], short in-
device storage challenges the deployment of heavy pretrained
models [148], and low bandwidth links and real-time nature
of the audio signals hinders the use of traditional cloud-
based inference [149], [150]. Much fundamental research is
still needed to properly address the urgent multidisciplinary
research problem of edge computing for the IoAuT.

There are multiple existing solutions to support the AI
interface at the edge. Examples include hardware accelerators,
such as Intel’s Neural Compute Stick 2 (NCS2)9 or Google’s
Edge Tensor Processing Units (TPU).10 These are compatible
with common single-board computers. However, these solu-
tions are suitable only for simple visual and audio recognition
tasks, with no guarantees on real-time processing or model
compression.

A series of recent works focused on compressing big neu-
ral networks to save storage, energy, communication, and
computational resources at the edge nodes. The proposed
approaches for solving this problem could be broadly classi-
fied into two categories. The first class includes methods that
reduce the number of parameters in the model [151], [152].
The second class includes methods to reduce the quantization
precision for storing and processing model parameters [153].
Iandola et al. [151] proposed smaller modules as building
blocks for emulating AlexNet. With their approach, the authors
designed an architecture that has 50× fewer parameters than
AlexNet [146] with almost no loss in the inference accuracy.
However, this approach is specifically designed for AlexNet,
and it is not easily applicable to compress other big models.
Simpler approaches include pruning, deleting the connections
of the trained model with small values, and quantization,
reducing the number of bits needed to store a parameter.
Han et al. [154] proposed the deep compression algorithm
that combines both pruning and quantization, leading to 35×
compression of AlexNet. These solutions often need the avail-
ability of the original data set to retrain the new (small)
model, which is not available in many use cases due to pri-
vacy or intellectual property protections. Krishnamoorthi [155]
proposed a quantization-aware training, in which the author
added artificial quantization noise to the parameters during the
training phase to make it more robust to potential future quan-
tization. However, this approach suffers an inherent tradeoff
that adding more quantization noise to the training pipeline
may lead to a very bad solution for the original less-noisy
problem. Moreover, in the literature, the model compression
techniques have been applied mostly to natural language pro-
cessing and image classification, whose signal statistics and
machine learning methods are very different from real-time
audio processing.

In many scenarios, e.g., WASNs, edge computing may
face a massive connectivity challenge where many edge
devices may need to coordinate and send some locally pro-
cessed information to a central coordinator [156]. Sharma and
Wang [157] proposed a framework to exploit the network-
wide knowledge at the cloud center to guide edge computing

9https://software.intel.com/en-us/neural-compute-stick
10https://coral.ai/

at local IoT devices. However, it cannot address the problem of
massive connectivity and the resulting significant performance
drop of wireless networks. Device-to-device communications
and local collaborations among the Audio Things are essential,
yet the area is very open in the literature. Such collaboration
can also improve the robustness of the decision making and
real-time data analytics to potential outlier and/or straggler
devices and compensate for per-device performance reduction
due to the use of compressed models and lower precision.

F. Synchronization

Distributed computational resources need to be synchro-
nized in time, though the degree of precision to which this
synchronization shall be is application dependent.

In order to maintain a good level of synchronization between
nodes of a processing graph, two quantities shall be controlled:
1) the local time of each node and 2) the delay, i.e., the amount
of time needed by the node to record or playback and audio
signal once the request to do so have been received. Quality of
service is ensured by minimizing the following quantities: the
variance of the difference between the local time of each node
σt and the variance of the difference between the delays of
each node σd. In order to better grasp the importance of these
quantities, three use cases are now described, with growing
requirements in terms of synchronization accuracy.

1) In WASN, the data have to be synchronized in order to
be able to interpret some behaviors happening across dif-
ferent nodes. In this case, σt and σd shall remain below
the second.

2) On the contrary, distributed playback systems that
operate over the Internet protocol (IP) [158], like
RAVENNA [159] or Dante [160], reducing σt and σd

below the millisecond is critical as the human auditory
system is highly sensitive to phase delays. In this case,
σd is not a strong issue as the nodes are simple play-
back systems that are not in charge of audio processing
or synthesis and in most commercial systems of very
similar hardware specifications.

3) Laptop [161], [162] or smartphone [163] orchestras are
much more challenging as they have the same require-
ments as distributed playback systems but have to face
much more stress on σd as the nodes of the network
have to process and synthesize audio before rendering
using a wide diversity of the hardware platform. The
latter calls for software-based solutions [164] that are
inherently limited in terms of precision.

Time synchronization issues are ubiquitous in distributed
computing, therefore many tools are available to minimize σd.
It has been tackled for standard usage by the network time
protocol (NTP) proposed in [165]. This protocol stands out by
the virtue of its scalability, self-configuration in large multihop
networks, robustness to failures and sabotage, and ubiquitous
deployment. NTP allows the construction of a hierarchy of
time servers, multiply rooted at canonical sources of external
time.

Despite being in use in many sensor networks, it may face
issues with this specific application. The first is that NTP
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assumes that computational and network resources are cheap
and available. While this may hold for traditional networks
of workstations, it may not be the case for low consump-
tion sensor networks. Furthermore, the dynamic topology of
the network can influence the degree of precision to which a
recently disconnected node is synchronized. Fortunately, NTP
operates well over multihop networks. If those matters are of
importance for the considered use case, other approaches, such
as the ones researched in [166] and the ones based on flooding
proposed in [167] and [168] may be considered.

When there is a need for very precise synchronization, the
precision time protocol (PTP) can be considered. Indeed, NTP
targets millisecond-level synchronization, whereas the PTP
targets nanosecond-level synchronization. This can only be
achieved by considering dedicated hardware at least for the
masters responsible for broadcasting the trusted time.

Tackling the issue of minimizing the delay for laptop or
smartphone orchestra can only be achieved for most appli-
cations by considering calibration in order to estimate the
maximal delay achieved by the nodes. Mostly based on stan-
dard software tools such as Web Audio, the proposed solutions
will improve as the software tools improve over those matters.
Still, the results presented in [113] are already quite satisfy-
ing, as they report σd of 0.2–5 ms for a wide range of devices.
If the use of hardware is possible, one can consider low-cost
alternatives to the PTP hardware that broadcast GPS reference
time over the network [169].

G. Privacy and Security Challenges

The IoAuT paradigm brings challenges related to personal
data, such as privacy and security, since some Audio Things
have the ability to automatically collect, analyze, and exchange
data related to their users.

Given the pervasive presence of the IoAuT, transparent pri-
vacy mechanisms need to be implemented on a diverse range
of Audio Things. It is necessary to address issues of data
ownership in order to ensure that Audio Things users feel
comfortable when participating in IoAuT-enabled activities.
IoAuT users must be assured that their data will not be used
without their consent. Concerning the IoT field, the Weber
recently highlighted the growing need for technical and regula-
tory actions capable of bridging the gap between the automatic
data collection by IoT devices and the rights of their users, who
are often unaware of the potential privacy risk to which they
are exposed [170], [171]. Examples include data leaks and
unauthorized collection of personal information [172], [173].
Necessarily, the same holds for the IoAuT. The definition
of privacy policies is one approach to ensure the privacy of
information. Audio Things can be equipped with machine-
readable privacy policies, so that when they come into contact
they can each check the other’s privacy policy for compati-
bility before communicating [174]. Security risks also come
from hardware hacking, which points toward the necessity of
the hardware-level encryption to ensure privacy policies are
adhered to. Thus, it is paramount that Audio Things design-
ers and manufacturers adopt a “privacy by design approach” as

well as incorporate privacy impact assessments into the design
stage of Audio Things.

Since Audio Things are wireless devices, they are subject
to the security risks of wireless communications. In today’s
Internet, encryption is a key aspect to ensure information
security in the IoT. As a consequence, Audio Things should
be designed to support robust encryption, which poses the
challenge of making these devices powerful enough to sup-
port it. Nevertheless, enabling encryption on Audio Things
requires algorithms more efficient and less energy consum-
ing, along with the development of efficient key distribu-
tion schemes [175]. Importantly, a uniform security standard
should be developed by the IoAuT research community and
industry in order to ensure the safety of the data collected by
Audio Things. This challenge is currently unsolved also in the
IoT field [170].

WASNs can be very useful to gather rich information about
different aspects of the quality of life in urban areas. Having
precise knowledge about that is mandatory for effective actu-
ation. This, in the end, will improve the quality of life of
citizens. That being said, the deployment of WASNs shall be
performed with a lot of care regarding the preservation of the
privacy of citizens. Even if speech is a rather weak biomet-
ric indicator, the information gathered using WASNs must not
contain any speech information that could be used by humans
or computers to capture information about the location or spo-
ken sentences of individuals. Following the different designs
detailed in Section III-A, different means can be considered.
If only the detection labels are propagated on the network,
this privacy is guaranteed by design. If spectral features are
sent, the frame rate must be sufficiently low to ensure that
speech cannot be reproduced [26]. If the raw audio has to be
transmitted, source separation techniques can be considered to
remove speech before transmission [176].

Novel business models can emerge leveraging data arising
from IoAuT technologies, for example, to provide services
related to monitoring activities (such as ambient intelligence
or surveillance). Ethical and responsible innovation are cru-
cial aspects that need to be considered when designing such
services to ensure that they are socially desirable and under-
taken in the public interest. Ultimately, the key to the success
of the IoAuT will be the users’ confidence. Hardware and soft-
ware manufacturers will need to convince consumers that the
use of Audio Things is safe and secure and to do this, much
work is still needed.

H. Audio Things Design

One of the most stringent design challenges for Audio
Things relates to the limited energy resources available to
most of them (e.g., the nodes of WASNs). Indeed, the battery
life of the devices represents a constraint for communica-
tion and computational energy usage. Typically, besides a
system for wireless communication Audio Things encompass
microphones and a processing board, and in other cases also
loudspeakers and various kinds of sensors. All these com-
ponents require a substantial (and in most cases continuous)
amount of energy. Solar panels have been utilized in various
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systems to cope with this issue (see [34]) but advances in
miniaturization and power of batteries are necessary. Another
possibility would be to augment existing objects deployed in
smart cities that are distributed and by default are connected to
a power supply, such as smart street lights, as in the CENSE
project [41].

Another design challenge relates to the creation of solu-
tions able to provide high quality in recording and/or sound
production, while still being cost effective. To date, cost-
effective solutions that can be deployed on large scale are
MEMS microphones, which on average, however, do not offer
a wide frequency response (typically 100 Hz–10 KHz) and res-
olutions, which may translate into low analytics capabilities.
In addition, miniaturization of the components of an Audio
Thing (from the microphone to the computational unit) is also
a desirable feature.

Furthermore, novel design paradigms should be devised for
systems exploiting the yet unexplored opportunities offered
by linking the IoT field with that of sonification or interactive
sonification. The IoT has the potential to facilitate the emer-
gence of novel forms of interactive sonification that are the
result of shared control of the sonification system by both
the user performing the gestures locally to the system itself,
and one or more remote users. This can, for instance, impact
therapies based on auditory feedback where the control of the
sound generation is shared by the patient and the doctor (see
the smart sonic shoes reported in [5]). The effect of such ther-
apy can be remotely monitored and data from several patients
performing such a sound-based therapy can be collected by
means of big data analytics techniques.

V. CONCLUSION

This article introduced the IoAuT as a novel paradigm
in which heterogeneous devices dedicated to audio-based
tasks can interact and cooperate with one another and with
other things connected to the Internet to facilitate audio-
based services and applications that are globally available to
the users. We presented a vision for this emerging research
field, which stems from different lines of existing research
including IoT, sound and music computing, semantic audio,
artificial intelligence, and human–computer interaction. The
IoAuT relates to wireless networks of smart devices ded-
icated to audio purposes, which allow for various forms
of interconnection among different stakeholders, in both co-
located and remote settings. The IoAuT vision offers many
unprecedented opportunities but also poses both technologi-
cal and nontechnological challenges that we expect will be
addressed in upcoming years by both academic and industrial
research.

This is arguably the first article to introduce the IoAuT
paradigm and to identify its requirements and issues. We
believe that substantial standardization efforts are needed to
address the open issues in order to realize the true potential
of the envisioned IoAuT. Just like for the general IoT field,
the success of the IoAuT strongly relies on standardization
requirements, which are currently unmet. The definition of
standards for platforms, formats, protocols, and interfaces will

allow for the achievement of interoperability between systems.
Issues related to security and privacy of information, which are
also common to the IoT, need to be addressed, especially for
IoAuT systems deployed for the masses. In addition, research
will need to address the challenge of how to design systems
capable of supporting rich interaction paradigms that enable
users to fully exploit the potentials and benefits of the IoAuT.

This article presented a vision for the IoAuT, highlighted
its unique characteristics in contrast to the IoT, and identified
the major challenges and requirements in order to realize it.
The realization of the proposed IoAuT vision would ultimately
benefit society, by providing a widespread use of ambient
intelligence mechanisms involved to monitor environments in
smart cities, as well as by offering new ways of interacting
with sounds across the network (such as sound-based therapies
involving remotely connected users).

We propose a roadmap for the implementation of the IoAuT
vision.

1) To progress the design of Audio Things, with new solu-
tions for the analysis of audio-related information based
on the edge computing paradigm.

2) To advance the current connectivity infrastructure, with
the implementation of novel interoperable protocols for
the exchange of audio-related information.

3) To tackle the challenges of privacy and security of
personal data, with a privacy by design approach.

4) To define standards and shared ontologies that will allow
one to avoid fragmentation and facilitate interoperability
among Audio Things as well as the services they offer.

It is hoped that the content of this article will stimulate
discussions within the sound and music computing and IoT
communities, so for the IoAuT to flourish.
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