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a b s t r a c t

The Internet of Musical Things (IoMusT) refers to the extension of the Internet of Things paradigm
to the musical domain. Interoperability represents a central issue within this domain, where hetero-
geneous Musical Things serving radically different purposes are envisioned to communicate between
each other. Automatic discovery of resources is also a desirable feature in IoMusT ecosystems. However,
the existing musical protocols are not adequate to support discoverability and interoperability across
the wide heterogeneity of Musical Things, as they are typically not flexible, lack high resolution,
are not equipped with inference mechanisms that could exploit on board the information on the
whole application environment. Besides, they hardly ever support easy integration with the Web.
In addition, IoMusT applications are often characterized by strict requirements in terms of latency
of the exchanged messages. Semantic Web of Things technologies have the potential to overcome the
limitations of existing musical protocols by enabling discoverability and interoperability across hetero-
geneous Musical Things. In this paper we propose the Musical Semantic Event Processing Architecture
(MUSEPA), a semantically-based architecture designed to meet the IoMusT requirements of low-latency
communication, discoverability, interoperability, and automatic inference. The architecture is based
on the CoAP protocol, a semantic publish/subscribe broker, and the adoption of shared ontologies for
describing Musical Things and their interactions. The code implementing MUSEPA can be accessed at:
https://github.com/CIMIL/MUSEPA/.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The Internet of Musical Things (IoMusT) refers to the ex-
ension of the Internet of Things (IoT) paradigm to the musi-
al domain [1]. This is an emerging and rapidly evolving field,
s demonstrated by a growing academic literature corpus (see
.g., [2–7]) and the appearance of a number of products developed
y the music technology industry (see e.g., the Elk Audio OS
eveloped by Elk1 [8] or the HyVibe Smart Guitar by HyVibe2).

In the IoMusT, objects dedicated to the production and/or re-
ception of musical content (Musical Things) are connected by a
networked infrastructure that enables multidirectional communi-
cation, both locally and remotely, between different stakeholders
such as audience members, composers, performers, live sound
engineers, studio producers, as well as music teachers and music
students. The ecosystems that will form around Internet of Mu-
sical Things technologies are envisioned to support novel forms
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E-mail address: luca.turchet@unitn.it (L. Turchet).

1 https://elk.audio/.
2 https://www.hyvibe.audio/smart-guitar/.
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570-8268/© 2022 Elsevier B.V. All rights reserved.
of interactions between such stakeholders by means of novel
musical applications and services [9,10]. This has the poten-
tial to revolutionize the way music is composed, performed,
experienced, learned and recorded.

Interoperability represents a central issue within this domain,
where heterogeneous Musical Things are envisioned to commu-
nicate between each other. Musical Things, such as smart mu-
sical instruments [11] or musical haptic wearables [12,13], may
serve radically different purposes within an IoMusT ecosystem
(e.g., from generation of haptic stimuli to real-time analysis of
musical content) and to accomplish the envisioned novel interac-
tions between the various stakeholders they need to
communicate through a common language. Automatic discov-
erability of resources in the network [14] is also a desirable
feature in IoMusT ecosystems. In addition, IoMusT applications
are often characterized by strict requirements in terms of latency
of the exchanged messages. To date, interoperability across mu-
sical devices has mostly relied on protocols for the exchange of
musical messages such as Musical Instrument Digital Interface
(MIDI) or Open Sound Control (OSC) [15] and tools based on it
(e.g., Libmapper [16]). However, the existing musical protocols
are not adequate to support discoverability and interoperability
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across the wide heterogeneity of Musical Things, as they are
typically not flexible, lack high resolution, are not equipped with
inference mechanisms, and do not support easy integration with
the Web [17].

Semantic technologies, such as Semantic Web [18], knowl-
dge representation [19], and semantically-based communication
rchitectures [20], have been envisioned as a solution to en-
ble interoperability across heterogeneous Musical Things as they
ave the potential to overcome the limitations of existing pro-
ocols conceived for musical contexts [1,17]. The Semantic Web
as born to transform the Web from a repository of human-
eadable information into an entity that allows for the machine-
nderstandability of data. This vision has spurred the emergence
f novel computing paradigms such as the Semantic Web of
hings (SWoT) [21,22]. SWoT has recently appeared as the latest
volution of the IoT and, as the name suggests, requires that
evices interoperate through the Internet using Web protocols
nd standards coming from the Semantic Web. Whereas the Web
f Things (WoT)3 refers to a computing paradigm where everyday
bjects are fully integrated with the Web [23], the SWoT relies
n a WoT implementation crafted on the technologies proposed
n the so-called ‘‘Semantic Web stack’’. The main components of
his stack allow for: (i) the univocal identification of resources
hanks to IRI (International Resource Identifiers); (ii) the rep-
esentation of data as a set of triples thanks to RDF (Resource
escription Framework) [24]; (iii) the definition of an ontology
o clearly state the meaning of represented data by using RDFS
RDF Schema) [25] and OWL (Web Ontology Language) [26]; (iv)
he storage and retrieval of data via the SPARQL Update [27] and
uery languages [28].
In the last decade, the specification and implementation of

ovel Application Programming Interfaces (APIs) in web browsers
such as WebAudio, WebSockets or WebGL) has enabled the use
f the web platform as a fertile playground for musicians [29].
he inherent networked nature and scalability of web technolo-
ies has allowed one to simplify and democratize the use of
obile devices for musical purposes [30], and in particular in
erformance contexts [31]. On the other hand, various ontologies
pecific to the musical domain have been built in recent years
see e.g., the Music Ontology [32] or the Studio Ontology [33]).
evertheless, thus far little attention has been devoted by re-
earchers to the application of Semantic Web technologies to live
usic contexts and even less to the IoMusT scenarios. Differently

rom other Things within the IoT, to date the few existing Musical
hings are disconnected from the Web and form a myriad of
mall incompatible islands. The possibility to monitor and con-
rol Musical Things via the Web, especially in real-time, using a
emantically enriched common language and dedicated semantic
rchitectures unleashes the potential to explore novel artistic
venues, such as performance and composition [3], for instance
ased on emergent properties of an IoMusT ecosystem [34–36].
ndeed, semantic technologies based on ontologies as well as
ommunication architectures specific to the IoMusT domain can
ssist in managing, querying, and combining information char-
cterizing an IoMusT ecosystem, including data about the music
roduced, the involved stakeholders, the utilized Musical Things
nd their application and services [17].
In this paper, we present a working implementation of the

WoT applied to the musical domain through the adoption of
hared ontologies for describing Musical Things and their inter-
ctions, coining this endeavor as the ‘‘Semantic Web of Musical
hings’’. Specifically, we present a novel semantic communica-
ion architecture based on the Constrained Application Protocol,

3 https://www.w3.org/WoT/.
2

which exploits the combination of existing ontologies that in-
clude patterns for dynamic interactions between Musical Things
[17,37,38]. Especially in live music scenarios, IoMusT deploy-
ments are often characterized by dynamicity, such as the need
of adding or removing new Musical Things joining or leaving
the ecosystem, re-defining the Musical Things’ behavior, or tun-
ing the ecosystem parameters. A relevant research challenge is
how to support the IoMusT deployment reconfiguration seam-
lessly, i.e., avoiding the manual intervention during a live music
performance. Moreover, some IoMusT deployments have strict
requirements in terms of latency of the exchanged messages
and support for constrained devices. A second challenge is thus
how to ensure that communication among Musical Things occurs
within acceptable latencies.

In developing our architecture we focused on the following
research questions:

1. How to ease the discovery and the management of Musical
Things?;

2. How to support the dynamic reconfiguration of IoMusT
ecosystems, e.g., the deployment of new Musical Things or
the interconnection among the existing ones, while mini-
mizing the need of manual configuration (for system ad-
ministrators) and coding (for programmers)?;

3. How to ensure low latency communication of semantically-
based messages?

It is worth noticing that our architecture is not meant to
support continuous real-time interactions across local or remote
devices (e.g., the continuous control of a parameter of a synthe-
sizer via the knob of a wirelessly connected controller). It is rather
conceived to address the three research questions mentioned
earlier, which are based on discrete interactions (e.g., the fast
discovery of when a new Musical Thing joins the ecosystem or
the fast automatic reconfiguration of the ecosystem based on
inference mechanisms).

To assess the developed architecture we implemented an
IoMusT ecosystem based on the Semantic Web of Musical Things,
showing how the dynamic setup proposed can foster interop-
erability at information level allowing smart discovery as well
as enabling orchestration and automatic interaction through the
available semantic information, while at the same time guar-
anteeing acceptable latencies for musical communication. Ulti-
mately, we demonstrate that these features allow one to create
a novel class of IoMusT ecosystems supporting different types of
interactions between various stakeholders.

2. Related works

2.1. Semantic Web of Things architectures

Relatively few recent works in literature propose IoT archi-
tectures mediated by semantics, for instance in context of smart
agriculture [39,40], smart cities [41,42] and healthcare [43–45].
One noticeable example is the study reported in [37], where a
global idea of Semantic Web of Things mediated by a publish–
subscribe architecture is developed, to be intended as one of the
origins of this work. The authors reported a working implemen-
tation of the WoT declined in its semantic flavor through the
adoption of a shared ontology for describing devices. Such an
ontology, named SWOT, accomplishes a high-level abstraction of
the devices and of their capabilities leveraging the concept of
Thing Description proposed in [46] for the WoT and the concepts
Property, Action, and Event proposed in [47]. Furthermore, re-
porting the contents of the aforementioned [37], the study also
addressed one of the main limitations present in the SWoT, the
fact that ontologies and semantic-formatted data are considered

https://www.w3.org/WoT/
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to be static, while any real context is continuously evolving
dynamically. This limitation was overcome by equipping SWOT
not only with the tools to build a static description of the things,
but also with a set of concepts that regulate the dynamic inter-
action. In this way, the dynamic nature of the ontology allows
one not only to describe the abstract context, but also to follow
its real-time evolution. SWOT was used in conjunction with a
SPARQL Event Processing Architecture (SEPA) [20,48]. SEPA aims
to enhance triple stores with a publish–subscribe layer on top
the SPARQL 1.1 protocol. SEPA clients, then, by using SPARQL
1.1 subscribe and update languages can, respectively, subscribe
to and publish semantic data. In this way, SEPA allows one to
easily create a semantic representation of the context and keep it
coherent with the physical environment as time passes.

Other works in the panorama suggest approaches that are dif-
erent from the one here presented. Semantic Stream Processing,
or instance, in [49–54] (just to name a few), where Bermudez-
do et al. describe an instantiation of SSN ontology [55] ex-
ended to stream annotation. They refer to streams of RDF data to
laborate events, which is not our case since we let our environ-
ent evolve handling events and situations through a publish–
ubscribe architecture.
Additionally, [56] presents an attempt to realize a triple store

or limited memory devices based on the same CoAP protocol we
se in this work. However, as already mentioned, our target is
ot to realize a conventional triple store, but an architecture for
usical applications enriched with semantics.
Eventually, it is possible to cite all the works, drafts and

ecommendations made by W3C and their derivations on IoT
nd WoT, some examples of which are [57–60]. The main differ-
nce with the present work, indeed, is that the main topic here
re musical applications on top of the aforementioned semantic
ublish–subscribe.

.2. Musical Things

In the IoMusT vision [1] a Musical Thing can take the form of a
usical instrument, a wearable, a smartphone, or any other smart
evice utilized to control, generate, or track responses to musical
ontent. At the heart of a Musical Thing there is an embedded
ystem dedicated to audio and/or sensor processing tasks, and
arious platforms have been proposed for this purpose [61]. In
he past few years various studies have investigated the use of
mbedded systems serving musical applications in networked
ettings (e.g., using WebAudio technologies [3]).
One of the building blocks of the IoMusT is represented by

he emerging family of musical instruments termed ‘‘smart mu-
ical instruments’’ [11]. Such instruments are the result of the
ntegration of embedded computational intelligence (running on
edicated platforms, e.g., [62]), wireless connectivity, embedded
ound delivery system, and an onboard system for feedback to
he player. They offer direct point-to-point communication be-
ween each other and other portable sensor-enabled devices con-
ected to local networks and to the Internet, fostering networked
usic performance systems [63,64]. To date, only a handful of

nstruments with such characteristics exist. Examples include
he Sensus Smart Guitar developed by Elk,4 the Smart Mandolin
escribed in [65], or the Smart Cajón reported in [66]. A growing
iterature of applications and services for them is emerging as the
esult of the novel capabilities they afford, such as the intercon-
ection of a smart guitar with mobile phones for collaborative
usic making over a local wireless network [67] or the use of
istributed intelligence, via cloud computing and edge computing
aradigms, for music learning and improvisation contexts [7].

4 https://elk.audio/sensus-smart-guitar/.
3

Another type of Musical Things is the class of devices termed
‘‘musical haptic wearables’’. These are wearable devices for per-
formers [12] and audience members [13], which encompass hap-
tic stimulation, gesture tracking, and wireless connectivity
features. Musical haptic wearables were devised to enrich musical
experiences by leveraging the sense of touch as well as provid-
ing new capabilities for creative participation. Their conception
was grounded on the findings of research in the field of hap-
tic technologies developed for musical applications [68] and of
participatory live music performances [69].

2.3. Interoperability in the musical domain

The MIDI protocol is a well established framework enabling
Digital Musical Instruments [70] to exchange musical informa-
tion. It was conceived in the 80s to enable interoperability across
musical instruments developed by different vendors. MIDI is not
well suited to achieve interoperability across heterogeneous de-
vices such those of the IoMusT because it was specifically con-
ceived for communication across musical instruments. In addi-
tion, MIDI is very limited in resolution (e.g., it uses integers
between 0 and 127), which prevents to represent information
with a high level of detail and accuracy.

In a different vein, OSC is a protocol more flexible and with
higher resolution than MIDI, as it enables user-defined names-
paces and supports messages with various formats (including
floats and strings). This would make OSC more suitable to facili-
tate communication across heterogeneous Musical Things.
However, OSC is not equipped with standard namespaces for
interfacing devices and as a consequence, connected devices
neither know each other or each other’s capabilities [71]. In the
past decade, various tools based on OSC have been proposed
where a semantic layer is added to the conventional OSC protocol
structure (such as Libmapper and Sense-World DataNetwork
[72–74]). These protocols provide decentralized resource allo-
cation and discovery, and flexible connectivity letting devices
describe themselves and their own capabilities. Nevertheless,
they target the use of a LAN subnet where support for multicast
can be guaranteed [16]. They are not conceived for Web-based
interactions nor they support mechanisms of automatic inference.

Semantic Web standards allow one to rely on a common
representation of data based on shared and agreed ontologies,
and provide a powerful mechanism to solve the problems of dis-
coverability and orchestration of services. However, to date few
attempts have been made to apply Semantic Web technologies
to live music scenarios and IoMusT ecosystems to achieve inter-
operability across devices. The first effort towards this direction
is represented by the semantically-enriched IoMusT architec-
ture reported in [75], which relies on a semantic audio server
and edge computing techniques. Specifically, the SEPA architec-
ture [20] was utilized as an interoperability enabler allowing
multiple prototypes of Musical Things to cooperate, relying on
a music-related ontology. A limitation of the developed archi-
tecture was the involvement of an ontology restricted to the
representation of simple musical features, which prevented Mu-
sical Things dedicated to purposes other than music generation
to join the ecosystem formed around the architecture. For this
purpose, two ontologies have been recently devised: the Internet
of Musical Things Ontology [17] and the Smart Musical Instru-
ments Ontology [38] that make large use of standard lower-level
ontologies like SOSA/SSN [55], PROV [76], and many others to
create their own concepts. Nevertheless, they have not been
employed yet in an actual IoMusT ecosystem, an endeavor tackled
in the present study.

However, Semantic Web technologies are in general slow and
verbose, so not suitable for IoT applications relying on real-
time aspects such as those envisioned in the IoMusT. Indeed the

https://elk.audio/sensus-smart-guitar/
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Semantic Web stack is oriented towards more static scenarios,
where information evolves at a lower rate [20]. To cope with
this issue, the authors created C Minor [77]. Such an architecture
improved the system reported in [75] by using a lightweight
IoT protocol for machine-to-machine communication, the Con-
strained Application Protocol (CoAP) [78]. The proposed approach
combines the expressive power of Semantic Web technologies
(i.e., RDF, RDFS, OWL and SPARQL) with the advantages of a
top-class IoT protocol such as CoAP (binary data sent over UDP,
resource/observe interaction pattern). The technology proposed
was envisioned to be useful in IoMusT scenarios where several
actors are involved in the music creation process, such as audi-
ence members using large-scale participatory live music systems.
In such scenarios it is indeed essential to reduce the transmis-
sion bandwidth consumption. However, C Minor was neither
conceived for nor applied within an actual IoMusT ecosystem
characterized by dynamic interactions, nor leveraged an ontology
specific to the IoMusT. These aspects are the object of the present
study.

3. Musical Semantic Event Processing Architecture

To implement our vision of the Semantic Web of Musical
hings, we propose the ‘‘Musical Semantic Event Processing Ar-
hitecture’’ (MUSEPA). This architecture leverages several con-
epts underlying the SEPA [20,48] and C Minor architectures [77],
nd applies such concepts to complex IoMusT ecosystems. Specif-
cally, MUSEPA is a semantic client/server architecture where
lients communicate by means of messages exchanged through a
erver (also named broker). The main assignment of the broker
s to hold and provide access to an RDF knowledge base by
eans of the SPARQL query and update language. The broker

s then a SPARQL endpoint and as such, clients communicate
hrough SPARQL requests. Nevertheless, differently from a stan-
ard SPARQL endpoint, MUSEPA also implements the publish/-
ubscribe paradigm: subscriptions allow clients to be notified
bout changes in the knowledge base avoiding polling. MUSEPA
hen provides the ability to retrieve data from a knowledge base
hrough the request/response or publish/subscribe paradigm and
pdate the knowledge base by adding, modifying or deleting
riples from it. Fig. 1 illustrates examples of data flow among
lients and broker.
Notably, by using a publish/subscribe semantic endpoint like

USEPA, we ensure that the knowledge base is constantly up-
ated with the context evolution. Through MUSEPA, clients avoid
olling for data (i.e., data is dispatched as soon as available).
ithin SEPA and MUSEPA a subscription is identified by a SPARQL
uery, that represents a subgraph pattern by means of the vari-
bles composing the WHERE clause. On top of this, both archi-
ectures would monitor the changes happening in the RDF store
ver the subgraphs matching the pattern, and notify with infor-
ation on the ones that were modified. This is precisely where

he main difference between MUSEPA and SEPA lies: MUSEPA
oes not calculate the added and removed triples like SEPA does,
ttempting in this way to address SEPA’s heaviest performance
ottleneck. Please refer to Section 3.2 for a better understanding
f the differences between SEPA’s and MUSEPA’s internal engines.
Leveraging the SWoT consists in setting up ontologies to reg-

late the relations among the Web resources, and therefore their
ifferentiation based on their reciprocal connections. For this pur-
ose, MUSEPA utilizes simultaneously the SWOT ontology [37],
he IoMusT ontology [17], and the SMI ontology [38]. In this
esearch we took as an assumption that devices would share the
ame ontological pattern description, which is actually a nec-
ssary compatibility requirement. The utilization of a publish/-
ubscribe semantic broker in conjunction with both an ontology
4

supporting the representation of the dynamic behavior of devices
and ontologies describing Musical Things, allows one to achieve
semantic representation of the context of an IoMusT ecosystem
and keep it coherent with its evolution.

As a matter of fact, the concurrent usage of MUSEPA and
the SWOT ontology, as explained in detail in [37], enriches the
environment with plain IoT semantic knowledge and its Action-
Event-Property architecture. Moreover, it realizes over the
publish–subscribe mechanism an environment capable of react-
ing to and interacting with the events that occur, and therefore
addresses the dynamic reconfiguration of the environment. Such
reconfiguration in our case is mediated by the specific IoT ap-
plication semantics, that is the musical IoT provided through the
IoMusT and SMI ontologies. These ontologies allow the process
of semantic discovery, which we can define as the activity of
becoming aware of which items the IoT environment contains,
with specific features that could help a Musical Thing to achieve
its goal.

MUSEPA is structured around the CoAP protocol for the ex-
change of messages, which presents several benefits compared
to available alternatives such as MQTT and AMQP:

• It was proposed by the Internet Engineering Task Force,
and in particular the Constrained RESTful Environments sub-
group, as a standard Request For Comment. Therefore, it
is an open, fully documented specification [79], which can
facilitate interoperability in the IoT;

• CoAP headers have a minimum impact on the message
size, [80];

• CoAP is based on UDP (while MQTT and AMQP rely on TCP),
but still supports retransmission of lost or damaged packets
through the mechanism of confirmable and non confirmable
messages. In this way CoAP removes the overhead caused by
the three-way handshake protocol;

• Compared to MQTT and AMQP, CoAP presents the lowest
bandwidth requirement and the lowest latency [80];

• CoAP addresses the problem of discoverability [81] by pro-
viding a list of the available resources;

• CoAP is designed to be easily mapped on HTTP, then binding
the SPARQL 1.1 Protocol [82] to CoAP is a very straight-
forward process.

In developing MUSEPA we considered two kinds of IoMusT
ecosystems. The first kind concerns ecosystems in which low-
latency communication is a crucial aspect (e.g., <100 ms, de-
ending on the application at hand). To this category belong
cosystems based on applications for real-time networked music
erformances [63,64] and in general real-time interactive musical
ystems. The second kind regards those ecosystems in which the
ommunication may be asynchronous or real-time but tolerating
elatively large latencies. This is the case of ecosystems dedicated
o musical activities such as pedagogy or composition, where
ervices do not strictly require low-latency communications. Ac-
ordingly, a relevant design choice consisted in the capability of
he system of storing and restoring a triplestore.

In the context in which low-latency communication is crucial
e did not rely on the recovery of triples from a triplestore
e.g., Apache Jena Fuseki), given the fact that its use would cause a
lower interaction due to its internal functioning (see Section 4.3).
nstead, we utilized a simple system in which an RDF graph is
opulated and temporarily saved in local memory (specifically,
or this purpose we used the Python library RDFLib), which is
uch faster in handling requests and subscriptions. Moreover,

n taking this design choice we considered that the utility of
estoring triples from a triplestore during live music scenarios
ay be less relevant, as well as keeping them in a persistent
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Fig. 1. Schematic representation of an IoMusT ecosystem based on the proposed semantic architecture. Different types of Musical Things can perform different
actions: a client can only update the knowledge base (left), a client can explore the knowledge base (middle), a client performs both update and exploration (right).
storage. Conversely, a triplestore was utilized for those contexts
in which the latency is not a strict requirement, and when the
recovery of the triples created in past utilizations of the system
is an important aspect.

3.1. From HTTP to CoAP

The SPARQL Event Processing Architecture (SEPA), that is the
ancestor of C Minor formerly, and indeed of MUSEPA, was devel-
oped on top of HTTP and WebSocket protocols. SEPA expects an
HTTP call to perform queries and updates, and keeps a number
of open WebSockets equal to the number of active subscriptions.
This choice was already addressed in the research that ended up
with the presentation of C Minor [77]: both WebSocket and HTTP
protocols exploit TCP. While it provides a reliable handshake, TCP
may not be the best choice in the case of constrained devices,
or specific application. A typical example of this is the streaming
of videos made on a UDP transport layer, since the rate of data
transmitted is more important than to ensure that all the packets
will be successfully delivered.

MUSEPA (and previously C Minor) uses the CoAP protocol
to build an architecture similar to SEPA. While the effective
differences in inner mechanisms will be discussed in the next
paragraphs, it is worth noticing that, first of all, we are not
using here two different protocols (HTTP and WebSocket), but
just one (CoAP) to obtain both the query/update interaction and
the subscription. This is a relevant point, if we consider a typical
problem that IoT programmers must solve: the limited memory
in devices. This issue often appears as an error while uploading
the firmware to the device, due to the fact that too much place
is required to include the needed libraries. By using one unique
protocol, we ensure that only one library is required to run a
minimal MUSEPA client.

Table 1 explains how MUSEPA can be used by the clients.
Namely, it states that aside from the Update and Query re-
quests, that are quite easy to understand, there are two additional
requests: subscription and observation. The latter, in particular,
s closely related to the CoAP protocol OBSERVE feature that
ereby allows us to re-create a function similar to the WebSocket
ubscription in SEPA.
5

3.2. Software architecture

The code that implements MUSEPA can be found in the Github
repository,5 together with a full explanation on how to download
or clone it, and then run it on a Linux machine. MUSEPA, like
the ontologies that have been named in the text, are all free and
publicly available.

MUSEPA, as it appears from the code and from Fig. 1, has
been implemented in Python 3 using the aiocoap library. The
architecture is overall composed of a central CoAP server which is
the MUSEPA engine: it will deal with direct client interaction, and
provide a publish–subscribe environment to them. On a lower
level, an RDF triple store is required, i.e., the location in which
all semantic information about the applications will be stored.
To interact and store the knowledge base in an RDF-compliant
format, three possibilities have been realized:

1. RDFLib v5.0.0 Python3 library was used to create a volatile
(but more performant) RDF knowledge base;

2. The interaction with Blazegraph has been implemented
and is also possible (external endpoint), to have a persis-
tent knowledge base;

3. Interaction with Apache Jena Fuseki is also possible (exter-
nal endpoint), similarly, and provides a persistent knowl-
edge base.

The choice of the endpoint is irrelevant (excepted from the per-
formance point of view), once a client starts an interaction with
MUSEPA.

As it can be seen in Fig. 2, various resources are available in the
MUSEPA server. Some of them come directly from the previous
C Minor implementation, although a few differences will be listed
in the next paragraphs.

First of all, let us consider a simple case in which MUSEPA runs
locally. In this situation the Root resource could be renamed as
localhost. Therefore, any client would interact with MUSEPA
as explained in Table 1:

• a CoAP GET to coap://localhost/sparql/query, pro-
viding a SPARQL Query payload, to get a query result;

• a CoAP POST to coap://localhost/sparql/update,
providing a SPARQL 1.1 Update payload, to modify the
contents of the knowledge base. Additionally, it would be

5 https://github.com/CIMIL/MUSEPA/.

https://github.com/CIMIL/MUSEPA/
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Table 1
MUSEPA CoAP APIs schema.
MUSEPA CoAP requests Notes

Update request verb POST
Text specified as: Payload SPARQL 1.1 Update or Turtle
Status code for success: 2.04 CHANGED
Status code for error: 4.00 or 4.02 BAD REQUEST, BAD OPTION
Response: No payload

Query request verb GET
Text specified as: Payload SPARQL Query
Status code for success: 2.05 CONTENT
Status code for error: 4.00 or 4.02 BAD REQUEST, BAD OPTION
Response: Payload JSON query answer

Subscription request verb POST GET (for information)
Text specified as: Payload SPARQL Query
Status code for success: 2.01 CREATED
Status code for error: 4.02 BAD OPTION
Response: Payload Observable resource name

Observation request verb GET OBSERVE/UNOBSERVE
Text specified as: No payload
Status code for success: 2.04, 2.05, 2.02 CHANGED, CONTENT, DELETED
Status code for error: 4.03 FORBIDDEN
Response: Payload JSON Query answer
Fig. 2. Tree representation of the resources available once MUSEPA is running.
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possible to provide the payload in a Turtle format, append-
ing the ?format = ttl option (this feature is not available
in C Minor and in SEPA).

• a CoAP POST to
coap://localhost/sparql/subscription, providing a
SPARQL Query payload, to request the creation of an observ-
able resource. If the resource already exists, this step can be
skipped;

• a CoAP OBSERVE to coap://localhost/obsX, to start the
observation of the resource, i.e., to start receiving notifica-
tions.

These last two points about subscriptions are handled in
USEPA quite differently than in SEPA and C Minor, and deserves
ome further considerations. Our goal, with this implementation,
s to suggest some ideas in order to simplify the concept of
ubscription. In SEPA architecture the subscription algorithm
eveals its complexity when it comes to identify a set of added
nd removed bindings. Let us consider a SPARQL subscription s(b)
here b is a vector of all the variables that should be bound when
xecuting the query. To define if subscription s has to trigger
otifications, for each update the SEPA architecture performs
s
added = bafter update − bbefore update (1)

s
removed = bbefore update − bafter update (2)

here again b are the bindings of the query, once executed.
Whenever both ∆s

added and ∆s
removed are empty, SEPA considers

hat no notification has to be sent for this subscription s. Other-
ise, a notification is sent with the contents of these two vectors.
ndeed, whenever a large number of triples is included in the e

6

knowledge base, and a large number of subscriptions is currently
active, the time of calculation for ∆s

added and ∆s
removed can be long.

This timing bottleneck lead us to develop in a previous re-
earch C Minor, introducing CoAP to reduce SEPA’s dependency
n TCP towards UDP, but also going a step further by reducing
onsiderably the calculation of these added and removed bind-
ngs. In a similar way, MUSEPA does not perform the calculation,
ut more simply performs s(b) before (sB(b)) and after (sA(b)) the
pdate. If the result is the same, then no notification is triggered.
therwise, yes. Within this paper, so, we keep supporting this
osition: while providing differential evolution of the knowledge
ase is really a consistent and important feature of SEPA, we
rgue that such calculation may be too cumbersome to deal with
housands of devices (which is not an impossible IoT scenario
owadays).
MUSEPA, consequently, implements the subscription in mech-

nism in the aforementioned way. To be more precise the se-
uence would be the following: (i) the client performs the sub-
cription request; (ii) MUSEPA accepts (or denies) the request and
reates an observable resource; also, it provides the path to reach
his resource; (iii) the client observes the resource.

A relevant difference between the behavior of C Minor and
USEPA must be highlighted here, regarding this sequence. C Mi-
or would join point (ii) and (iii) in the apis: the client is there
equested to provide the SPARQL query that he/she is interested
n, and the name of the observable resource. Leveraging an exam-
le from [77], an example of SEPA-C Minor subscription request
ould be: that would imply the creation of an observable resource
t coap://localhost/all. We found that C Minor was treating
his way each request, denying the ones that were colliding with
re-existing aliases. However, the real problem was that there
as no way in making two clients observe the same resource,

ven if they were asking for the same SPARQL query.
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{
"query " : "SELECT ∗ WHERE { ?s ?p ?o } " ,
" a l i a s " : " a l l "

}

To address such problem, we changed the logic in MUSEPA,
eeping separated the subscription request from the observation.
he subscription request would hereby contain just the SPARQL
uery, and the payload of the response would contain the hash
f the query. MUSEPA, in fact, provides the alias to the client

(and not vice versa) in the form of the hash of the request and
creates accordingly the observable resource (represented in Fig. 2
by \obs1 and \obsN).6 This means that:

1. two different clients making the very same subscription
would end up in observing the same resource. Indeed, one
can argue that SELECT * WHERE {?a ?b ?c} and SELECT *
WHERE {?s ?p ?o} are the same subscription, but yet they
do not have the same hash. Indeed, this is true, but such
identity due to the SPARQL language can be easily restored
with a few checks that are not in the scope of this paper.

2. from point (1), less resources are used in the server to
instantiate the observable entities, and to trigger the no-
tifications. This feature is particularly interesting in IoT
environments, where generally we have a high number of
devices making extremely similar requests.

n additional problem of this setup is that, as it is known, it is
ard, but yet generally possible to find two strings with the same
ash. Consequently, theoretically, we may encounter a bug for
hich two different SPARQL queries have the same hash, and
herefore are both directed to the same resource by MUSEPA
ngine. In our development we considered to the best of our
nowledge this probability to be extremely low given the fact that
e are requesting that not only the two strings simultaneously
sed have the same hash, but also that they are valid SPARQL
ueries.
Once the subscription request has been handled, the client is

ree to observe the given newly created resource.
Some additional features available in MUSEPA:

• The \info resource, that provides useful information to the
client;

• The possibility to perform GET requests to the \subscrip-
tion resource, to get some stats about currently active sub-
scriptions (e.g., the SPARQL query, the number of observing
clients);

• The prefix setup. As is it known, both in SPARQL and in
Turtle the preamble with the list of prefixes is an important
part of the contents. The prefix setup in MUSEPA is a useful
feature that allows the clients to avoid sending with each re-
quest a list of prefixes. In this way, we simply give MUSEPA
the prefixes that we think will be mostly used during our
application, and they will be systematically appended to all
incoming requests.

Please refer to Section 4 for the evaluation and further discus-
ion on memory/complexity issues.

.3. Musical Things on the Semantic Web

According to W3C perspective, a Thing can indicate both a
hysical or a virtual device and each Thing is associated to a

6 In this case coap://localhost/294a2eefbe9b4220451664e59aaf1c6b
ince the hash of ‘‘SELECT * WHERE {?a ?b ?c}’’ is 294a2eefbe
9b4220451664e59aaf1c6b.
7

Thing Description. This is a sequence of meta-data modeling the
interaction patterns (Properties, Actions, and Events) as well as
the security and access protocol information. Moreover, the Thing
Descriptions are intended to be encoded in a standard RDF serial-
ization, e.g. JSON-LD, and therefore in a machine-understandable
way.

The most recent recommendations for the Web of Things
released by the W3C in June 20217 are slightly different from
the view presented in this paper. This is due to the fact that,
as already said in Section 2.1, one of the origins of this paper is
located in [37]. While such work is based on a previous version of
W3C drafts, it provides an ontology that was designed to be used
by SEPA and its successors, like MUSEPA. As it is stated there,
however, the two visions not only can coexist, but will be fully
integrated in a future work.

Therefore, following the W3C’s WoT vision of an IoT fully
integrated with the Web, we equip, where possible, Musical
Things with a small HTTP server. The purpose of the server is
that of exposing on the Web the Musical Thing Description. Such
a description of the device relies on the semantics specified by
the ontologies in which MUSEPA operates (i.e., the SWOT, IoMusT,
and SMI ontologies). Each Musical Thing may be associated to a
public IP address. Devices accessing the Musical Thing Descriptor
will find all the necessary information about how to interact and
control it.

Nevertheless, not all Musical Things may have the neces-
sary computational resources to handle an HTTP server. This is
especially the case of those embedded systems dedicated to real-
time audio processing tasks which need to primarily ensure a
good audio quality without audio dropouts. In these cases the
Musical Thing’s description requests can be handled by MUSEPA
as follows.

In general, having an HTTP server exposing the Thing Descrip-
tion is just a solution to publicly share it. Given the fact that
all information about the environment should be stored in the
knowledge base, it is also possible to retrieve a Thing Description
by performing the appropriate SPARQL query to the knowledge
base directly. An example of Thing Description in an RDF-turtle
format can be found in Listing 2 So, alternatives to the HTTP
Server:

• Issue a query similar to the one in Listing 1 to MUSEPA,
in which we look for Interaction Patterns (Actions, Events,
Properties) that belong to a Thing located at
<http://smartguitar.eu>;

• If the knowledge base endpoint is known and reachable,
issue a query similar to the one in Listing 1 to the endpoint
(e.g., Fuseki, Blazegraph).

PREFIX rdf : <http : / /www.w3. org/1999/02/22− rdf−syntax−ns#>
PREFIX swot : <http : / / purl . org / ontology / swot#>

SELECT ∗ WHERE {
<http : / / smartguitar . eu> rdf : type swot : Thing ;

swot : hasThingDescription ?td ;
swot :hasName ?tName .

OPTIONAL { <http : / / smartguitar . eu> swot : hasSubThing ?
subThing } .

?td swot : hasInteract ionPattern ? ip .
? ip rdf : type ? ip_type .
OPTIONAL { ? ip swot : forProperty ?pTarget } .
FILTER ( ? ip_type != swot : Interact ionPat tern )

}

Listing 1: Example of possible Thing Description discovery
query, inspired from [37]

7 https://www.w3.org/TR/wot-thing-description/.

http://smartguitar.eu
https://www.w3.org/TR/wot-thing-description/
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@prefix swot: <http://purl.org/ontology/swot#>.
@prefix iomust: <http://purl.org/ontology/iomust/internet_of_things/iomust#>.
@prefix smi: <http://purl.org/ontology/iomust/smi#>.
@prefix sosa: <http://www.w3.org/ns/sosa#>.
@prefix mx: <http://purl.org/ontology/studio/mixer/>.
@prefix con: <http://purl.org/ontology/studio/connectivity/>.
@prefix device: <http://purl.org/ontology/studio/device>.
@prefix fx: <https://w3id.org/aufx/ontology/1.0>.
@prefix studio: <http://purl.org/ontology/studio/main>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

<http://XSDstringDataSchema.org> rdf:type swot:DataSchema.
<http://XSDdoubleDataSchema.org> rdf:type swot:DataSchema.
<http://XSDintegerDataSchema.org> rdf:type swot:DataSchema.

<http://smartguitar.eu> rdf:type swot:Thing;
rdf:type iomust:SmartInstrument;
rdf:type sosa:Platform;
swot:hasName ’Smart_Guitar ’;
swot:hasThingDescription <http://smartguitarDescription.eu>.

<http://smartguitarDescription.eu> rdf:type swot:ThingDescription;
swot:hasInteractionPattern <http://smartguitar.eu/ProvideBatteryValue>,

<http://smartguitar.eu/IsBeingPlayed>,
<http://smartguitar.eu/TriggerLowBattery>,
<http://smartguitar.eu/Battery>;

swot:hasAction <http://smartguitar.eu/ProvideBatteryValue>;
swot:hasEvent <http://smartguitar.eu/IsBeingPlayed>,

<http://smartguitar.eu/TriggerLowBattery>;
swot:hasProperty <http://smartguitar.eu/Battery>,

<http://smartguitar.eu/SoundEngine>,
<http://smartguitar.eu/SoftwareMixer>.

<http://smartguitar.eu/ProvideBatteryValue> rdf:type swot:InteractionPattern , swot:Action;
swot:hasName ’Smart_Guitar_Provide_Battery_Value ’;
swot:hasDataSchema <http://XSDstringDataSchema.org>,

<http://XSDdoubleDataSchema.org>;
swot:hasInputDataSchema <http://XSDstringDataSchema.org>;
swot:hasOutputDataSchema <http://XSDdoubleDataSchema.org>.

<http://smartguitar.eu/IsBeingPlayed> rdf:type swot:InteractionPattern , swot:Event;
swot:hasName ’Smart_Guitar_Is_Being_Played ’;
swot:hasOutputDataSchema <http://XSDbooleanDataSchema.org>.

<http://smartguitar.eu/TriggerLowBattery> rdf:type swot:InteractionPattern , swot:Event;
swot:hasName ’Smart_Guitar_Triggers_Low_Battery ’;
swot:hasOutputDataSchema <http://XSDstringDataSchema.org>.

<http://smartguitar.eu/Battery> rdf:type swot:InteractionPattern , swot:Property;
swot:hasName ’Smart_Guitar_Battery ’;
swot:isWritable ’false’;
swot:hasPropertyDataSchema <http://XSDdoubleDataSchema.org>;
swot:hasData <http://smartguitar.eu/Battery/PropertyData>;
swot:hasPropertyData <http://smartguitar.eu/Battery/PropertyData>.

<http://smartguitar.eu/SoundEngine> smi:works_at_audio_sampling_rate " 48000 " ^^xsd:integer .

Listing 2: Portion of the Turtle file of the Thing Description of a Smart Guitar.
. Evaluation

This section describes the evaluation of MUSEPA focusing on
ts key aspects, namely interoperability, discoverability, auto-
atic real-time inference, and latency communication perfor-
ances. To assess the quality of these features supported by
USEPA we created a real IoMusT ecosystem around it, and
e implemented different tasks accomplished by the involved
usical Things exemplifying possible interactions across differ-
nt stakeholders. Specifically, we conducted the testing on the
ost complex among the IoMusT scenarios, namely that of live
erformance.
The IoMusT ecosystem was composed by a server hosting

USEPA and the following heterogeneous Musical Things:

• A smart mandolin prototype built around the Bela board
(reported in [65]);
8

• A smart guitar prototype built around a Elk-Pi board (adapt-
ing the instrument reported in [7]);

• A shoe-based prototype of musical haptic wearable for a live
sound engineer (reported in [12]);

• Two armband-based prototypes of musical haptic wearable
for audience members (reported in [13]);

• Three ad-hoc built apps for iOS-based smartphones coded in
swift and integrating CoAP;

• An Oculus Quest virtual reality headset, with an engine
coded in Unity 3D and integrating CoAP.

The server was an HP Pavillion i7 laptop running Ubuntu Linux
20.04. Connectivity was implemented using the IEEE 802.11ac
Wi-Fi standard over the 5 GHz band thanks to a TP-Link TL-
WR902AC router. Following the recommendations reported in
[83] to optimize the components of a Wi-Fi system for live per-
formance scenarios to reduce latency and increase throughput,
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the router was configured in access point mode, security was
disabled, and only the IEEE 802.11ac standard was supported.
The Musical Things composing the ecosystem were chosen for
their heterogeneity of purposes and system architectures. The
purposes ranged from music generation (accomplished by the
instruments for performers), haptic stimulation (accomplished by
the musical haptic wearables for live sound engineer and audi-
ence members), virtual environment rendering (accomplished by
the headset for audience members), and screen-based interac-
tions (accomplished by the smartphones for audience members).
The architectures spanned from different linux-based hard real-
time platforms to iOS and Android-based systems. The integration
of CoAP in each of these systems was feasible given the availabil-
ity of CoAP libraries in different programming languages (swift,
python, c#).

4.1. Interoperability and discoverability assessment

First of all, it is necessary to better explain the concept of
iscoverability that is intended to be the focus of this Section.
he idea of discoverability can be interpreted at connection level,
.e., the possibility to perform some kind of action to know, as
result, the IP address of each entity connected to the network.
r, conversely, as a kind of discoverability based on higher level
eatures, namely investigating the available devices that could be
alled to perform some actions, in order to achieve a goal. In
his study we focus on the second alternative, since the usage of
DF technologies and MUSEPA gives the opportunity to represent
he features of the devices in an interoperable manner. In such
design, devices need to know only the IP address of MUSEPA

o discover their environment by means of queries similar to the
ne reported in Listing 1, which is not the case of the former ap-
roach. Nevertheless, it is worth noticing that the two approaches
re not necessarily mutually exclusive: the possibility of sharing
connectivity mediated by MUSEPA, and a direct one as in plain

oT technologies, may lead to new facets of the Web of Things
hich could be investigated in future research.
Interoperability and discoverability are features that arise from

he adopted design choices. To be more precise, it is worth men-
ioning that the adopted SWOT ontology, which is responsible
or the dynamic reconfiguration of the environment, has already
een evaluated in [37]. Similarly, the IoMusT and SMI ontologies
responsible for semantic interoperability and discoverability)
ave already been evaluated in their respective studies [11,17].
s the three ontologies were already evaluated and are available
nline along with their full documentation,8 it was not necessary

to perform an evaluation of them in the present work.
Interoperability is ensured by the use of standards of the

Semantic Web, including OWL and turtle. Being shared among
devices, they participate to the setup of a Musical IoT seman-
tic environment in which all devices are described according
to the same vocabularies. The ontologies utilized are very well
documented and accessible. At a device interaction level, interop-
erability is also guaranteed by the adoption of a protocol, CoAP,
which is well supported in all the most widespread programming
languages. Discoverability is achieved by means of the dynamic
behavior of MUSEPA, which is based on updates, queries, and
subscriptions.

A common requirement for IoMusT performance ecosystems
is that participants can spontaneously join an experience and
interact within a distributed environment composed of different
devices. As a proof of concept to demonstrate the interoperability

8 https://w3id.org/iomust#
ttps://fr4ncidir.github.io/SemanticWoT/
ttps://w3id.org/smi#.
9

and discoverability aspects, we implemented a performance sce-
nario in which each Musical Thing joins and leaves the network at
a different time, and when this happens the behavior of the other
Musical Things present in the ecosystem changes. Specifically,

• When the smart mandolin joins the network the two
armband-based musical haptic wearables configure them-
selves to trigger a vibration in response to each note played
(see [13]) and the virtual reality headset configures itself to
display a virtual environment whose objects are controlled
by the sensors of the instrument (see [10]);

• When the guitarist presses a button of the smart guitar,
the shoe-based musical haptic wearable worn by the live
sound engineer triggers a vibration pattern (e.g., the case
of a guitarist willing to call the attention of the live sound
engineer, see [12]);

• When the battery level of the smart mandolin gets lower
than the 20%, the shoe-based musical haptic wearable worn
by the live sound engineer triggers a vibration pattern;

• When a smartphone joins or leaves the ecosystem the other
smartphones configure themselves to produce a different
musical note.

Listing 3 shows an example of the SPARQL code performing a
smart discovery.

4.2. Automatic real-time inference

The possibility to conduct automatically and in real-time a
reasoning process on a database containing information about
the performance ecosystem represents a novel opportunity for
musical applications. To show an example of automatic inference
behavior we considered a participatory live music scenario and
implemented the following use cases:

• The audience members use their smartphones to send (to
a central server hosting MUSEPA) their preference among
three choices; a voting mechanism is in place on the server
such that if at least two audience members performed the
same choice then the smart mandolin and the smart guitar
are notified and parameters of their sound engine (i.e., a
delay feedback and a reverb time) are automatically changed
to produce a different timbre;

• All times that the smart guitar and the smart mandolin play
together, the smartphones blink with a yellow light and
the VR headset displays a yellow-colored scenes; when the
smart guitar is playing and the smart mandolin is not play-
ing, then the smartphones blink with a blue light and the
VR headset displays a blue-colored scenes; when the smart
mandolin is playing and the smart guitar is not playing, then
the smartphones blink with a red light and the VR headset
displays a red-colored scenes;

A relevant concept that should be considered from this setup,
and that can be also applied to other environments, is that while
the environment works as a whole to realize the application,
MUSEPA also provides the support for reconfiguration (i.e., re-
configuration knowledge-based). A device being removed would
trigger the notifications to the subscribed entities, if any, which
could thus take countermeasures, if needed

4.3. Latency assessment

As stated earlier, while implementing MUSEPA we attempted
to be careful with resource management. As a result, we in-
troduced the hash-naming of the observable resources, to avoid
multiple instances for the same subscription, as well as the prefix

https://w3id.org/iomust#
https://fr4ncidir.github.io/SemanticWoT/
https://w3id.org/smi#
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SELECT ∗ WHERE {
?a rdf : type swot : Thing , iomust : SmartInstrument ; swot :hasName ’ Smart_Guitar ’ .
?a swot : hasThingDescription ?td .
?td swot : hasAction ?action .
?action swot : hasDataSchema ?dt .
?action ?dataschematype ?dt .

} "

Listing 3: SPARQL example of smart discovery of the possible actions provided by a smart guitar, including the actions’ types of
inputs and outputs.
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ontrol to reduce the amount of data exchanged. In this Subsec-
ion we provide some numerical insights on this work. Before
roceeding, however, a few more points need to be highlighted.
Which evaluation is reasonable for our architecture? Indeed,

e know that CoAP runs on UDP and, therefore, the reliability of
ackets reaching destination is a factor that is dependent on the
etwork, which is far beyond the scope of this paper. Therefore,
his is not a valid starting point.

As a matter of fact, we can consider that any call to MUSEPA
mplies a global execution time Trequest

request = τCtoM + tM + τMtoC (3)

here τCtoM is the time that a request takes to travel from the
lient C to MUSEPA (CtoM); vice versa, τMtoC is the time from
USEPA to the client (MtoC). Then, tM is the elaboration time
ithin MUSEPA itself.
It is clear from Eq. (3) that τMtoC and τCtoM are the aforemen-

ioned timings that depend on plenty of factors unrelated with
ow the MUSEPA internal engine is programmed, which is not the
ase of tM. In this Section, consequently, we will focus exclusively
n tM, with some caveats:

• For Queries, the time tM = tQuery, that is the difference
from the time at which the query request is fulfilled from
the time at which it is received. This is an evaluation that
depends completely on the endpoint chosen, RDFLib, Blaze-
graph, Fuseki or others, and therefore we intend it as not
relevant for our research, since the topic is not to perform
an evaluation of the endpoint’s performances;

• Update evaluation can be modeled as a problem similar to
query: i.e., the time tM = tUpdate is the difference between
the time at which update is committed and the time at
which the update request is received, with additional infor-
mation about the format that can be SPARQL 1.1 payload
update and Turtle payload update. Again, this is also an
evaluation that depends completely on the endpoint chosen,
and therefore we intend it out of the scope of the paper. The
real interest of this research is in the timings that bound
notification performances (see next point), that is a complex
compound of update and query timings;

• For Subscriptions, conversely, the time tM = tNotification is
the time elapsed from the moment in which an update is
received up to the moment in which the last client subscribed
is notified (see Fig. 3). This is the value that we consider
mostly relevant to obtain some numerical evaluation of
MUSEPA’s architecture performance boundaries, since the
full execution of the notification engine is included in this
time measurement.

On a practical point of view, the evaluation was implemented
s follows. First of all, we refer from now on to a MUSEPA server
unning over an RDFLib triple store. The reason for this choice is
hat we actually want to make an evaluation targeting possible
oMusT applications in a realistic way (which would not be the
ase, as explained in the previous Sections, with Blazegraph or
10
useki). Other triple stores (Fuseki, Blazegraph...) all introduce
n HTTP protocol communication in the process, which is def-
nitely not a good choice (due to protocol design) for musical
pplications. Although it is clearly important to cite them, it
ppears to the authors that a full comparison would have been
ather irrelevant to the musical environment: even the simplest
ase would have been not acceptable in terms of performances.
econdly, we obtained a set of test cases for a relatively simple
cenario designed to represent a situation in which MUSEPA must
andle larger and larger payloads in notification bodies. With
eference to IoT and IoMust, large payloads can be considered as
‘bad’’ cases, since usually for IoT and IoMusT we would rather
xpect smaller payloads, but frequent notifications and a large
umber of clients. So, the two main evaluation directions to be
ollowed, then, are (i) testing with an increasing number of triples
xchanged; (ii) testing with an increasing number of subscribers.
To better explain these two choices, please consider what

ollows. We hereby target IoT and, more specifically, IoMusT
nvironments, which we try to implement as an integration of
evices. Modern IoT pervasiveness, in particular, allows us to ex-
ect a larger and larger number of similar devices, all performing
imilar subscriptions within their own context. In addition to that,
e can also expect devices that are constrained in their hardware,
emory, bandwidth and that will unlikely perform extremely
omplex operations or edge data integration. These two factors,
ventually, support the choice of (i), realizing a scenario with a
ot of triples being shared; and (ii), stressing the idea of a large
umber of actors in the environment.
The number of triples, as it can be seen in Fig. 3, spans from
up to 40000. They have been obtained by filling the RDFLib
nowledge base with the result of querying DBpedia9 with a
imple SELECT * WHERE {?a ?b ?c} LIMIT %i, where %i is a
onstant related to the number of the triples of the test.
The number of subscribers waiting for the aforementioned 1

o 40000 triples update notification, in the other hand, was tested
n three different cases: 10 clients, 25 clients and 40 clients. They
ll do as a concept the same subscription SELECT * WHERE {?A
B ?C}, even though we took care of creating random variable
ames. This helped us realizing a test that takes into account non
verlapping subscriptions (see Section 3.2, where we describe the
ashed-alias mechanism). Indeed, even the 40 simulated clients is
ot much, if we consider a general IoT and IoMusT environment:
owever, since MUSEPA is a prototype, and future works are in-
ended to address real implementations of IoMusT environments,
e consider that the present research can be a relevant starting
oint for further enhancements not only in IoMusT and possibly
eneral IoT, but also in the implementation of MUSEPA for real
orld applications.
The code can be found in the same GitHub repository of the

roject.
We present here a result of update-to-notification measure-

ent in a graphical form in Fig. 3. This measurement has been
ade on a Windows™10 (Ubuntu subsystem) 20.04.1 64 bits

9 https://www.dbpedia.org/.

https://www.dbpedia.org/
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Fig. 3. Update to notification time measurement.
unning on an Intel
®

Core™ i7-9750H CPU @ 2.60 GHz with 16 GB
f RAM memory.
As it can be seen in the figure, the notification time measure

s divided into two charts: one where the time elapsed between
he update request and first notification is reported, and the
ther where there is the time elapsed between the update re-
uest and last notification. What we can understand from the
harts, overall, is that MUSEPA suffers like SEPA of the problem
f rapidly increasing notification time along with the increasing
umber of subscribing clients and triples, although the minimum
otification time appears to be dependent only on the number of
riples (which is a direct consequence of the usage of aiocoap
ibrary in MUSEPA code). Let us mention again that the RDF triples
ndpoint is here fixed to be RDFLib. The timings, anyway, clearly
how that yet MUSEPA cannot deal with large IoMusT setups,
ince we have performances that, as of now, are definitely not
ufficient for musical applications that need a large number of
riples (i.e., a large number of connected objects interacting). At
east, the results appear to be subjected to a linear growth in our
est case, compared to the tests that were done for SEPA in [20],
here performances were superlinear on number of triples in the
nowledge base and on the number of subscribers, due to the
omplexity of the binding difference calculation algorithm. This
s an encouraging result, although there is clearly room for more
ork and more enhancements in the future, if we consider the
arget of making a real semantic IoMusT application.

Nevertheless, given the fact that MUSEPA is here presented as
prototype in Python, we are confident that a C++ implemen-

ation exploiting the complete features of multithreading would
easonably achieve better results over a less generic test.

. Discussion

Important advantages of our system include (i) the openness
f the proposed architecture, which is ensured by the adoption
f Semantic Web standards; (ii) the separation of the logical
ata model from implementation details. This makes the data
odels, representations and their relation to musical concepts,
vents or actions reusable and improves interoperability overall.
he graph-based conceptualization of RDF data representation
11
also lends itself to representing complex musical metadata more
easily compared to tree-based structures such as XML or pure
JSON or protocols that only support ad-hoc semantics such as
OSC. The benefits of this is apparent in how MUSEPA is easily able
to serve as an arbitrator in a musical performance environment,
which is the most complex among the IoMusT scenarios.

Notably, MUSEPA was not devised to support continuous real-
time interactions across devices either locally or remotely. The
latencies obtainable even with very efficient implementations of
the architecture would be anyways too high to ensure
perceptually-valid control by a human musician. Rather,
MUSEPA’s design was based on goals such as the support for the
fast discovery of when a new Musical Thing joins the ecosystem
or the fast automatic reconfiguration of a complex ecosystem
based on inference mechanisms. These are discrete interactions.
For continuous real-time interactions between Musical Things,
protocols such as MIDI or OSC are a better choice. Nevertheless,
nothing prevents the use of such protocols in conjunction with
MUSEPA in order to take advantage of their complementary
benefits within a same ecosystem.

Furthermore, in the current study we did not introduce any
semantic reasoning engines in the MUSEPA architecture. We plan
to investigate such a possible extension in the near future.

MUSEPA was conceived to overcome the limitations of existing
musical communication protocols with the aim of addressing
a better communication within IoMusT ecosystems. Therefore,
it is worth comparing MUSEPA with libmapper, being this the
system currently closest to MUSEPA within the music technology
domain. Notably, to be sensible in the context of the present
study this comparison needs to be made in relation to the IoMusT
field. Firstly, libmapper was conceived to overcome some limi-
tations of the OSC protocol. Whereas flexibility in development
is provided by the fact that OSC messages are tagged with a
user-specifiable, human-readable string instead of a predeter-
mined controller ID number, this has the drawback to hinder
interoperability as devices do not communicate with a common
language. libmapper approaches this drawback by providing a
mechanism of translation from an OSC description into another.
Conversely, MUSEPA does not perform any translation. Devices
are required to adopt the language described by the utilized
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ontologies. Secondly, whereas libmapper simply provides a min-
imal layer to enable devices describing themselves and their
capabilities, MUSEPA adopts the full expressive power of on-
tological representation, which has also the benefit to enable
automatic reasoning processes over the knowledge base. Thirdly,
libmapper was not conceived for interactions across the Internet.
Conversely, MUSEPA can support both local and remote interac-
tions across devices. Along the same lines, libmapper was not
designed for supporting the integration with the Web, which is
instead a feature fully supported in MUSEPA. Fourthly, libmapper
was conceived for supporting a continuous and parametric con-
trol where a controller present in a system (e.g., a sensor) directly
controls the parameter/s of another system (e.g., a parameter of
a synthesizer). MUSEPA adopts a completely different approach,
which is based on a publish/subscribe mechanism. Nevertheless,
continuous parametric control is also supported, although this ap-
proach is sub-optimal from the latency standpoint. Furthermore,
given the adopted distributed approach, to record and store data
about the musical session (i.e., the exchanged messages) libmap-
per needs to recur to a central hub additional to the devices
communicating. This solution, however, requires the doubling of
all messages occurring in the ecosystem which can cause large
amounts of traffic as the number of nodes increases. MUSEPA by
using a centralized network topology is exempt from these issues.

Whereas, all these features make MUSEPA an ideal candidate
o support communication in IoMusT ecosystems, the current im-
lementation of MUSEPA presents also some limitations. Firstly,
he communication latency may be improved. However, this is
ikely a feature of the current implementation which relies on
ython. A C++ implementation is expected to drastically im-
rove the processing latencies reported in Section 4.3. Secondly,
t present, a graphical user interface is missing, which would
elp less technically skilled musicians to configure their Mu-
ical Things and leverage the interaction capabilities afforded
y the ecosystem. A dashboard could facilitate users to interact
ith each Musical Thing by visualizing its properties, executing
ommands or observing the notifications produced (an approach
ollowed in [84]). Future research is needed to understand the us-
bility of the system by means of extensive user testing. Thirdly,
eveloping ecosystems with the proposed framework may be
ore complex than with non-semantic approaches. The develop-
ent effort may not pay back for small-scale ecosystems with
omogeneous devices and limited application scope. Conversely,
he presented approach is beneficial in dynamic complex scenar-
os like large-scale distributed performances with several stake-
olders, where wide interoperability is required and sensing and
ctuating tasks need careful selection of data sources and devices.
urthermore, a current limitation of the developed system is the
ack of security support. Security is a crucial issue for the IoMusT
omain [1] as well as for MUSEPA, given the possibility offered
y our architecture to discover, interact, and potentially update
emote Musical Things. Therefore, proper authorization mecha-
isms must be designed to avoid data leaks or harmful operations
n shared resources within IoMusT leveraging MUSEPA.

. Conclusions

In this paper, we proposed the integration of the Semantic
eb in the Web of Things within the musical domain, leading

o the Semantic Web of Musical Things paradigm. We presented
USEPA, a semantic publish/subscribe broker specifically de-
igned to meet the requirements of Internet of Musical Things
cosystems. Specifically, MUSEPA adapts the concept of a SPARQL
vent Processing Architecture [20] to CoAP, a lightweight ap-
lication protocol commonly adopted in the IoT. The evaluation
howed the ability of the developed architecture in acting as an
12
interoperability enabler allowing multiple heterogeneous Musical
Things to cooperate, relying on shared music-related ontologies.
Besides automatic discovery, the architecture is able to support
communications with communication latencies acceptable for
most of the musical activities envisioned in the IoMusT.

In future works we plan to enhance MUSEPA in different
ways. Firstly, we plan to port the current Python implementation
to C++. This is expected to lead to much better performances
in terms of processing latency. Secondly, we will study how it
would be possible to make further advancements in the field
of Web of Things and Musical Web of Things by exploring the
current recommendations of W3C concerning the Scripting APIs
and the Thing Description ontology, that are evolving in paral-
lel with SWOT and the current realization of MUSEPA. Thirdly,
we will enhance MUSEPA with security features so that IoMusT
forming around such a technology are ensured to be socially
desirable and undertaken in the public interest. Fourthly, we plan
to create a graphical user interface to facilitate the adoption of
MUSEPA also by those less technically skilled. Along the same
lines we envision a direct integration of MUSEPA communication
mechanisms in software for real-time music processing such as
Pure Data or Max/MSP. In addition we will consider the inte-
gration of specialized compression algorithms for Semantic Web
languages (as reported in [21]) to achieve a further reduction
of storage and network load. Furthermore, we will further vali-
date the operations of the presented architecture on large-scale
IoMusT deployments.

To date, standardization activities for the IoMusT are mostly
unrealized [1] and are crucial for its success and indispensable
to avoid the fragmentation that characterizes the general IoT
field [85]. The work reported in this paper aimed to perform a
decisive step towards this direction.

Ultimately, this study showed that an implementation of Se-
mantic Web of Musical Things makes it possible to create ecosys-
tems supporting various types of interactions across different
stakeholders, such as performers and audience members. The
application of MUSEPA as a system to exchange information
across heterogeneous Musical Things, has the potential to result
in novel semantically-based interactions between stakeholders as
well as between stakeholders and musical content. These include
novel kinds of live music performances, teaching methodologies,
and approaches to composition. The authors look forward to fu-
ture applications of the proposed technology in different IoMusT
ecosystems.
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