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Abstract—This paper investigates to which extent state of the art
machine learning methods are effective in classifying emotions in
the context of individual musical instruments, and how their perfor-
mances compare with musically trained and untrained listeners. To
address these questions we created a novel dataset of 391 classical
and acoustic guitar excerpts annotated along four emotions (ag-
gressiveness, relaxation, happiness and sadness) with three emotion
intensity levels (low, medium, high), according to the intended
emotion of 30 professional guitarists acting as both composers and
performers. A first experiment investigated listeners’ perception
involving 8 professional guitarists and 8 non-musicians. Results
showed that the emotions intended by a composer-performer are
not always well recognized by listeners, and in general not with the
same intensity. Listeners’ identification accuracy was proportional
to the intensity with which an emotion was expressed. Emotions
were better recognized by musicians than by listeners without
musical background. Such differences between the two groups were
found for different intensity levels of the intended emotions. A sec-
ond experiment investigated machine listening performance based
on a transfer learning method. To compare machine and human
identification accuracies fairly, we derived a fifth, “ambivalent”
category from the machine listening output categories (i.e., excerpts
rated with more than one predominant emotion). Results showed
that the machine perception of emotions matched or even exceeded
musicians’ performance for all emotions except “relaxation”. The
differences between the intended and human-perceived emotions,
as well as those due to musical training, suggest that a device or
application involving a music emotion recognition system should
take into account the characteristics of the users (in particular
their musical expertise) as well as their roles (e.g., composers,
performers, listeners). For developers this translates into the use
of datasets annotated by different categories of annotators, whose
role and musical expertise will match the characteristics of the
end users. Such results are particularly relevant to the creation of
emotionally-aware smart musical instruments.
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expertise.
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I. INTRODUCTION

DURING the last two decades, the study of emotions in
music has attracted an increasing attention of researchers

from different disciplines, including experimental psychology
and computer science. Emotions in music have been studied
from different perspectives: i) perceived, i.e., the emotions iden-
tified by an individual when listening; ii) felt, i.e., the emotional
responses an individual experiences in body and mind when
listening (these, it is worth noticing, can be distinct from the
perceived ones); iii) intended, i.e., the emotions that the per-
former and/or composer aimed to convey [1].

Researchers in the field of Musical Psychology developed dif-
ferent emotion paradigms (e.g., categorical or dimensional [2]),
and investigated the capability of encoding emotions in both
composers and performers [3], [4] along with the ability of
listeners in identifying emotions in music [5]. In parallel, the
Music Information Retrieval research community, leveraging
results from Musical Psychology, has focused on the topic of
Music Emotion Recognition (MER), which aims at devising
systems capable of automatically identifying emotions present
in musical signals [6]–[8].

Various research gaps exist today for the study of emotions
in both domains including, to the best of authors’ knowledge,
the following. As far as Musical Psychology is concerned: 1)
studies so far investigated either the composer or the performer
as the source of the intended emotion, not the figure of the
composer-performer, who is simultaneously able to create and
also express the emotion to be communicated to a listener; 2)
the stimuli involved often lack ecological salience [9], e.g., en-
compassing synthesized sounds, a score composed only by one
composer, simple melodic lines, or film music where de-facto
the composers were not explicitly instructed to communicate a
specific emotion; 3) the influence of the intensity of an intended
emotion on the listener’s perception has been largely overlooked;
4) the influence of musical training on the ability of listeners to
recognize emotions in music is still unclear.

Regarding the gaps in Music Information Retrieval: 1) the
vast majority of MER systems have focused on musical pieces
involving multiple instruments, while little is known on the
performance accuracy of state of the art methods, such as neural
networks, on emotional datasets of individual instruments; 2)
MER research typically involves datasets that are not created
from scratch with the aim of conveying a specific emotion,
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but generic datasets that are emotionally annotated by a pool
of listeners, often leveraging tags derived from users of online
platforms; 3) the annotations made by listeners may be biased
by their musical expertise, which therefore can lead to MER
systems with intrinsic biases that model the emotion perception
by specific categories of individuals; 4) MER systems have
so far focused on perceived and/or felt emotion, not yet on
the modeling of emotions intended by composers-performers;
5) MER methods have not yet taken into account the varying
intensity of the intended and perceived emotions.

In this paper we aim to address such gaps, with the end goal of
creating a MER method that can be embedded into smart musical
instruments and enable novel application scenarios for them.
Smart musical instruments [10] is an emerging class of digital
musical instruments, which is envisioned to be aware of the
emotions expressed by the performers in order to support various
kinds of musical activities through dedicated services (such as
the query of music repositories by playing excerpts with a given
emotional connotation [11]). Specifically, our research questions
are: i) how does musical expertise of listeners modulate the
emotion decoding ability?; ii) does the intensity of an intended
emotion influence the human and artificial identification accu-
racy?; iii) how well can MER systems identify human intended
emotions in music when variation due to instrumentation is
removed?; iv) how effective is transfer learning in neural net-
works for a single-instrument MER task when the donor corpus
contains multiple instruments?

To address such questions we first created a specific dataset
of intended emotions using the guitar as individual instrument.
This dataset was annotated by level of emotion intensity by
the same composers-performers who were asked to create and
express such emotions. In particular, we involved the classical
and acoustic guitar (which respectively use nylon and metal
strings) as well as a pool of thirty professional guitarists. We
focused on the guitar because it is one of the most widespread and
known instrument worldwide and because it is the instrument
mostly investigated in smart musical instruments research [10],
[11]. Notably, we focused on the figure of composer-performer
because we envision the direct application of the investigated
methods into musical devices such as smart musical instru-
ments, with which the player commonly creates and expresses
emotionally connotated music, such as improvisations (e.g., for
recreational music making, performances, rehearsals). Further-
more, merging the roles of composer and performer removes
any possibility of emotional ambiguity between composition and
performance, such as when a performer interprets a composition
in a way that contradicts the composer’s intent.

Secondly, we conducted listening tests with another set of
professional guitarists as well as with non-musicians, to assess
differences in the emotion perception of the two groups. Sub-
sequently, we compared the human identification accuracy with
machine learning algorithms, creating models that predict the
emotional intent of a composer-performer. We selected a transfer
learning approach because we aimed to utilize the state of the
art MER model reported in [12], which is freely available and
has bindings that allow it to run on an embedded system such
as the Elk Audio OS [13] and thus be easily integrated into

a smart musical instrument. Before adopting a transfer learn-
ing workflow, we attempted other MER methods, but without
achieving good performance. Our hypothesis was that the use
of the transfer learning MER model reported in [12] coupled
with a relatively small ad hoc guitar dataset involving four emo-
tions (aggressiveness, relaxation, happiness and sadness) would
have led to satisfactory recognition accuracy, thus enabling the
creation of an emotionally-aware smart guitar. We discuss the
achieved results in terms of implications for the MER field and
how they can be used to inform the design of musical interfaces
based on MER systems.

II. RELATED WORK

A. Psychological Studies

The emotional quality of a musical performance is influenced
both by the information represented in the musical score (i.e.,
the contribution of the composer) and by the expressive actions
of the performer who interprets the score. Notably, emotions
intended by composers and performers may differ [14]. In-
deed, composers and performers have different types of musical
attributes under their control. Whereas composers primarily
control pitch, harmony, tonality, rhythmic structure, and in-
strumentation, performers focus on the musical microstructure,
which comprises subtle variations in timing, playing technique,
articulation, loudness, tempo, and often pitch intonation.

A number of researchers have investigated the relation be-
tween emotions expressed by a performer and perceived by a
listener. The methodology typically adopted by these kinds of
studies is that of asking performers to interpret with different
emotional intentions some pre-composed melodies or pieces,
whereas listeners are asked to assess the presence of a certain
emotion among a pool of emotion categories on a scale (e.g.,
of 11 points) varying from absent to present, or from minimum
to maximum. The study reported in [15] involved various in-
struments (violin, electric guitar, singing voice, and flute) and
six emotions (happiness, sadness, fear, anger, tenderness, and
expressiveness). Results showed that listeners were generally
successful in decoding the intended emotion. The study has been
recently replicated in [5] yielding similar results. Comparable
results are also reported in [4] for an analogous experiment
addressing ornaments of melodic lines, with the exception of
happiness which was less recognized.

On the other hand, only a handful of studies have investigated
the relation between emotions intended by a composer and the
emotions perceived by the listener. In the study reported [3], five
composers were asked to compose melodies with six emotional
intentions (joy, sorrow, excitement, dullness, anger and peace),
which were rendered in the form of synthesized piano sounds.
Listeners were asked to provide judgements relating to the
emotional quality of the melodies on 7-point Likert scales, one
for each of the six emotions. Results showed that composers
were capable of communicating distinct and definable emotional
qualities to listeners. The adoption of a similar methodology
yielded similar results in the study described in [16]. In a
different vein, the authors of [2] assessed listeners’ perceived
emotions of excerpts of film music (composed to convey an
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emotional intention). Results showed congruence between
listeners’ reported emotion and intended emotion in film music,
which was higher for highly representative examples of the
investigated emotions than the moderately ones.

To date there is no consensus on the effect of musical training
on musical emotion decoding abilities. Whereas some studies
reported no effect of musical training (e.g. [16]–[19]), other
studies found an effect of musical training on musical emotion
recognition accuracy (e.g. [5], [20]–[23]). This calls for more
research on the musical expertise of the listeners as a possible
predictor for emotion decoding abilities in music.

B. Automatic Music Emotion Recognition

A significant body of research in both Musical Psychology
and Music Information Retrieval has focused on the relations
between emotions and specific musical attributes, uncovering
various associations. For instance, happiness is frequently re-
lated to pieces characterized by major modes, whereas sadness
and anger are often associated to minor modes [24]; complex,
dissonant harmonies are usually associated with emotions such
as excitement, tension or sadness, while simple, consonant har-
monies with happiness, pleasantness or relaxation [25]. For a
recent review on emotionally-relevant audio features for MER
see [8], which covers both low-level (e.g., spectral features),
perceptual (e.g., articulation), and high-level semantic features
(e.g., genre).

A variety of MER technique have been developed e.g., [25]–
[29]. A major driving force behind this research is that emotion
is consistently ranked as a desirable criterion to search music
by [30]. Typically MER tasks have been approached in two
different ways. The first consists of regressing a continuous
emotional space such as the Arousal-Valence one [31], and
subsequently clustering such space to obtain a specific emotion
vocabulary [32]. The second comprises the classification of a
given musical excerpt into one or more emotions, thus becoming
a multi-label classification problem with a fixed vocabulary [33].
In this paper, we focus on the second approach. As shown by
results of existing studies [7], [29] and the Audio Mood Clas-
sification task of the 2007-2020 Music Information Retrieval
Evaluation eXchange, state-of-the-art solutions for multi-label
classifications are still unable to accurately solve simple prob-
lems such as the classification of four or five emotion classes.

Various MER datasets with emotion annotations have also
been proposed, e.g., [27]–[29]. However, such datasets do not
take into account the true nature of the emotions intended by the
composers and performers (including the intensity level), nor
are they annotated according to the perception of emotions of
individuals with varying levels of musical expertise which may
impact the actual ground truth for MER systems. In this study
we are interested in addressing such limitations by focusing
on individual instruments rather than considering a dataset of
musical ensembles. Large emotionally annotated datasets spe-
cific to individual instruments are currently missing, along with
dedicated MER methods for such case. This is a major limita-
tion that hampers the development of emotionally-aware smart
musical instruments, an emerging family of musical interfaces
envisioned in [10].

III. DATASET CREATION

One of the aims of this research was to introduce a new,
improved dataset, consisting of unfamiliar, thoroughly tested
and validated non-synthetic music excerpts, for the study of
music-mediated emotions and MER systems. Moreover, this set
of stimuli was conceived not only to include examples of target
emotions with strong intensities, but also examples with weak
intensities that enable the study of more subtle variations in
emotion. Notably, we involved completely novel musical pieces
because well-known music examples may be familiar to the
performers or the listeners, and the resulting elicited emotions
can be closely entwined with extra-musical associations [34].

A. Participants

To create the emotional guitar dataset we recruited 30 pro-
fessional acoustic and/or classical guitar players (all Italian, 2
females, 28 males), aged between 25 and 56 (mean = 38.06,
SD = 8.83). They reported to have at least 11 years of active
music expertise (mean = 26.4, SD = 8.16) and on average
started learning playing music at the age of 11. We selected
such musicians because they were both able to compose and
perform emotional intentions well. Specifically, we aimed to
avoid potential differences in the intended emotions that may
arise between the two roles [14].

B. Procedure

Each guitar player was asked to compose and record at least
12 short emotional pieces, 3 for each of 4 emotions (aggres-
siveness, relaxation, happiness, sadness). Each recording was
required to have a duration ranging from 20 to 50 seconds and
should have been performed in optimal conditions such as in a
recording studio or a silent room, using the internal microphone
system embedded in the instrument or external microphones.
Composers were requested to not apply any effect to the guitar
signal, but to use the original sound of the instrument. They
were asked to create multiple pieces within the same emotion
that were distinct from one to another (this was due to our
aim to increase variety in the dataset). No further indication
was given. Therefore, composers were left completely free to
use their creativity to express the indicated emotions, using
various levels of emotional intent (e.g., very happy music or
a little aggressive piece), playing technique (e.g., fingers or
pick), expressive technique (e.g., glissando, bending, tapping,
harmonics), style, gender, harmonic progression, tempo, etc.
They were compensated € 50.

Some guitarists recorded for both the acoustic and classical
guitar, while others recorded more than the 12 compositions
required. This led to a total of 391 recordings, of which 259 for
acoustic and 102 for classical guitar. Subsequently, composers
were asked to indicate for each piece the level of their emotional
intent in expressing that emotion, on a 3-point scale indicating a
low, medium, and high intensity. Specifically, regarding sadness
the values composers could choose from were “a little sad,”
“sad,” “very sad” (analogous for the other emotions). Notably,
this request was made after and not before the recording because
we wanted to leave the musicians free to express their emotion
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TABLE I
NUMBER OF COMPOSED PIECES IN THE CREATED DATASET CATEGORIZED BY

THE COMPOSERS’ EMOTIONAL INTENT AND ITS INTENSITY

with the intensity that they felt was most appropriate, without im-
posing a particular level on them. Table I provides a description
of the dataset in terms of number of composed pieces categorized
by the composers’ emotional intent and their intensity.

The emotions happiness, sadness, aggressiveness, and relax-
ation were chosen for two reasons. First, because they have
been investigated in several studies on emotional expression in
music [35], and because they cover the four quadrants of the
two-dimensional Arousal-Valence space [1]. Secondly, because
they have been tested in previous machine listening setups [12],
[25] (see Section V).

IV. DATASET ANNOTATION: COMPOSERS’ INTENTION AND

LISTENERS’ PERCEPTION

The first set of annotations of the dataset are those resulting
from the composers’ own evaluations of their emotional inten-
tion when composing and recording the pieces, which was per-
formed on a scale of 3 levels. Subsequently, we performed a set of
listening tests to annotate the dataset according to the perceived
emotion. Such tests were also devised to address our research
questions of quantifying the difference between the listeners’
judgements of the perceived emotion and the original emotional
intent of the composers, as well as how such difference may be
modulated by the listeners’ musical expertise.

A. Participants

Sixteen participants took part to the listening tests, 8 profes-
sional guitar players (1 female, 7 males) aged between 27 and
45 (mean = 36.62, SD = 7.06), and 8 non-musicians (2 females,
6 males), aged between 22 and 45 (mean = 27.75, SD = 8.79).
The 8 musicians were not involved in the recording of the dataset
(their primary instrument was the acoustic guitar for 5 of them,
and the classical guitar for the other 3). The average number
of years of active practice of guitar playing was 26 years. The
average age when starting to learn guitar was 10 years old. The
non-musicians had not had any formal or informal instrumental
music training, and did not play any instrument. Participants
were compensated € 50. None reported any hearing problem.

B. Procedure

To avoid presenting test subjects with an excessive number
of test conditions, we divided the 391 recordings into seven
blocks of 49 and one of 48. All stimuli were block-randomized.
Listeners were asked to wear headphones and judge to what
extent they recognized each of the four emotions in each excerpt.

For each emotion, listeners performed a rating on a 7-point scale,
where each point was labelled. For instance for happiness, the 7
labels were: “very not-happy,” “not-happy,” “a little not-happy,”
“neutral,” “a little happy,” “happy,” “very happy” (for the sake
of the analysis these labels were converted in the corresponding
numbers between -3 and 3). Analogously for the other three
emotions. Listeners were instructed to rate the four emotions
independently. Each excerpt was presented only once, but lis-
teners could listen to the excerpts as many times as they wanted
before giving their judgement. The first test was preceded by
a short familiarization phase consisting of two recordings not
provided in the main test which were composed and recorded by
the first author. All tests were conducted using webMUSHRA,
a web-based listening test framework [36].

C. Analysis and Results

Following the analysis paradigm adopted in other studies
involving similar listening tests [16], [22], [23], we derived
the strongest emotion attributed to each musical piece by each
participant. We calculated, for each participant and for each
emotion, the percentage of accurate responses, defined as the
highest rating score for a piece corresponding to the emotion
intended by the composer. When the highest rating corresponded
to the label that matched the intended emotion, a score of 1 was
given. When the highest rating did not correspond to the emotion,
a score of 0 was given. When equally high ratings were given to
more than one label, the response was considered as ambivalent
and received a score of 0. For example, given a piece composed
with the sadness emotional intent and a rating of Aggressive =
-2, Relaxed = 2, Happy = -1, Sad = 3, the response would be
counted as correct, whereas Aggressive = -2, Relaxed = 3, Sad
= 2, Happy = -1, would be counted as incorrect. On the other
hand, Aggressive = -3, Relaxed = 1, Sad = 1, Happy = -2,
would be considered as ambivalent.

Table II presents the percentage of accurate categorizations
for each emotion and the distribution of inaccurate and ambiva-
lent responses for all participants (top), guitarists (middle), and
non-musicians (bottom). Fig. 1 illustrates a comparison between
the groups of the percentage of accurate categorizations, in total
as well as for each emotion. The intended emotions had the
highest response percentage for all emotions. As it can be seen on
the diagonals of Table II (bold cells), accuracy ranged between
23.71% (happiness in non-musicians) and 64.79% (aggressive-
ness in guitarists). Nevertheless, ambivalent answers had a high
percentage across all conditions and for both groups.

Correct categorizations were analyzed using an ANOVA with
chi-square distribution performed on a model fitted with a bino-
mial logistic regression, which had factors emotion and musical
expertise, and subject as a random effect. Statistically significant
main effects were found for emotion (χ2(3) = 204.15, p <
0.001), musical expertise (χ2(1) = 9.11, p < 0.01), and for the
interaction (χ2(3) = 69.39, p < 0.001). Post hoc tests were per-
formed on the fitted model using pairwise comparisons adjusted
with the Tukey correction. Regarding the factor emotion, aggres-
siveness was found to have a higher number of correct answers
compared to happiness, relaxation, and sadness (all p < 0.001).
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TABLE II
MEAN PERCENTAGE AND STANDARD DEVIATION OF THE LABEL THAT RECEIVED THE HIGHEST RATING BY ALL THE LISTENERS (TOP), GUITARISTS (MIDDLE),
AND NON-MUSICIANS (BOTTOM), AS A FUNCTION OF THE INTENDED EMOTION OF THE COMPOSER. BOLD INDICATES THE MATCH BETWEEN RESPONSES AND

INTENDED EMOTIONS. AMBIVALENT RESPONSES CORRESPOND TO HIGHEST RATINGS GIVEN TO MORE THAN ONE LABEL

Fig. 1. Mean percentage and standard deviation of the correct identifications as a function of musical expertise level (pro = professional guitarists,
none = non-musicians). Legend: ** = p < 0.01, *** = p < 0.001.

Regarding the interaction term, the number of correct answers
of professional guitarists was significantly higher compared to
those of non-musicians for happiness (p < 0.001).

To assess the differences in participants’ identifications due
to the emotional intensity, we conducted an analysis on the
correct categorizations using an ANOVA with chi-square dis-
tribution. This was performed on a model fitted with a binomial
logistic regression having factors emotion intensity and musical
expertise, and subject as a random effect. Statistically significant
main effects were found for emotion intensity (χ2(1) = 42.48,
p < 0.001), musical expertise (χ2(1) = 9.55, p < 0.01). Post
hoc tests were performed on the fitted model using pairwise
comparisons adjusted with the Tukey correction. Regarding
the factor emotion intensity, the high intensity was found to
have a higher number of correct answers compared to medium

intensity (p < 0.05) and low intensity (p < 0.001), while the
medium intensity was found to have a higher number of correct
answers compared to low intensity (p < 0.001). Regarding the
interaction term between musical expertise and emotion inten-
sity, the number of correct answers of professional guitarists
was significantly higher compared to those of non-musicians
for medium and high intensity (both p < 0.05). Results are
illustrated in Fig. 2.

We also analyzed the results considering the influence of
musical expertise on the difference between the intensity value
of the emotion expressed by the composers and the ratings of
the listeners, regardless of the identification correctness. This
analysis provides a quantification of the error listeners make
in identifying the intensity of an emotion originally intended
by composers. Results are shown in Fig. 3. We performed an
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Fig. 2. Mean percentage and standard deviation of the correct identifications as a function of the intensity of the emotional intent of the composer and of the
musical expertise level (pro = professional guitarists, none = non-musicians). Legend: * = p < 0.05, *** = p < 0.001.

Fig. 3. Mean and standard deviation of the difference between the intensity value of the emotion expressed by the composers and the ratings of the listeners as
a function of musical expertise level (pro = professional guitarists, none = non-musicians), regardless of the identification correctness. Legend: * = p < 0.05,
** = p < 0.01.

ANOVA on a linear mixed effect model having emotion and
musical expertise as fixed factors, and subject as a random factor.
A significant main effect was found for emotion (F(3,6234) =
33.79,p < 0.001), musical expertise (F(1,14)=4.55,p < 0.05),
and their interaction (F(3,6234) = 10.21, p < 0.001). Post hoc
tests were performed on the fitted model using pairwise compar-
isons adjusted with the Tukey correction. Regarding the factor
emotion, aggressiveness was found to have a smaller intended
vs. perceived difference compared to happiness, relaxation, and
sadness (all p < 0.001). Regarding the interaction term, the
intended vs. perceived difference of professional guitarists was
significantly smaller compared to those of non-musicians for
happiness (p < 0.01).

D. Discussion

The study investigated the listeners’ ability to recognize four
distinct emotions (aggressiveness, relaxation, happiness, and
sadness) in musical excerpts that were composed to purposely
convey these emotions. The musical excerpts were not found to
convey effectively the intended emotions, although all emotions
were recognized with a better than chance probability by both
professional guitarists and non-musicians (in a conventional
forced-choice task with five response alternatives, four emotion
categories and ambivalent responses, chance-level would be

20%). As shown in Table II (top), the intended emotion was
recognized with more than 35% correct for relaxation, happi-
ness, and sadness, while aggressiveness was best recognized
(with 57%). Nevertheless, it is worth noticing that ambivalent
answers had also a very high percentage across all conditions
and for both groups, which is an indication of the uncertainty of
listeners in classifying an excerpt as having one dominant emo-
tional component. This is in contrast with the original intention
of the composers-performers of expressing unambiguously a
determined emotion.

On the other hand, the results clearly indicate an effect of
musical expertise on the ability to recognize an emotion intended
by a composer. On average, the identification performance
of professional guitarists was significantly better than that of
non-musicians. However, it should be noted that this does not
seem to hold true for all possible emotions. As a matter of
fact, the relaxation emotion received percentages of correct
identification that were highly similar for professional guitarists
and non-musicians.

The results also showed that portrayals with strong emotion
intensity yielded higher decoding accuracy than portrayals with
weak intensity. Notably, the differences found for the two groups
did not depend on the intensity level of the emotion intended by
the composers, i.e., they were found for both weak and strong
intensities.
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V. AUTOMATIC EMOTION RECOGNITION

A. Experimental Setup

The purpose of this experiment was to investigate how ma-
chine learning (ML) models compare to human listeners. Having
reliable ML models for emotion recognition would enable the
creation of applications based on the indexing of large cata-
logues of music accordingly, such as for instance the retrieval of
emotional music performed via cloud-smart musical instrument
interactions as reported in [11].

As noted in the introduction, existing MER systems have so
far focused uniquely on processing multi-instrument music. A
state of the art system based on deep learning is presented in [12],
which has an implementation freely available as part of the
Essentia toolkit [37]. The limited generalisation of these multi-
instrument models quickly became apparent when running them
on our new dataset. All pretrained models available1 identify the
presence of all four emotions in nearly all recordings, resulting
in high recall but poor precision.

Models trained specifically on solo guitar are therefore
needed. We followed the approach taken by [12] in that we
took a pretrained convolutional model created for auto-tagging,
named musicnn [38], as a donor for transfer learning. We then
built a classifier by adding two dense classification layers and
an output layer on top of its penultimate layer. The architecture
for musicnn consists of convolutional and pooling layers that
are specifically tuned to capture musical characteristics [39].
Its parameters are set by training on two large music datasets
(one set of weights per dataset), MagnaTagATune [40] (≈19 k
tracks) and the Million Song Dataset [41] (≈200 k tracks). As
our dataset is comparatively small for training a deep learning
model, leveraging pretrained models through transfer learning
proved to be crucial.

Unlike [12], we trained a single model capable of predicting
the most dominant out of the four considered emotions. We used
100 dense nodes with ReLU activation in the penultimate layer
and an output layer of four. A softmax function was chosen as
activation of the output layer. In comparison, [12] created four
different binary classifiers for each emotion, each trained on a
separate dataset collected during earlier work on the topic [25].
Our unified dataset makes it possible to consider all emotions at
the same time and study their interdependence.

Our choice for a transfer learning workflow also determined
the input to the model. Like the original musicnn network, our
input consists of logarithmically compressed mel-spectrograms
consisting of 96 mel bands extracted from audio signals down-
sampled to 16 kHz in Hann windows of 512 samples with
50% overlap. These mel-spectrograms are then presented to the
network in disjoint slices covering 3 s (187 frames).

The network was trained using five-fold cross-validation,
where all recordings by the same composer-performers were
considered as an indivisible unit when determining the folds. As
customary for transfer learning, training was performed in two
stages. At first, the weights of the donor network were kept fixed
until convergence on the validation set, then the whole model
was further updated in a fine-tuning stage.

1https://essentia.upf.edu/models/

In order to mimic as closely as possible the listening test, only
the emotion category was used as target label, not the intensity
level. The reasoning is that we want to teach the machine to
recognise the intended emotion in the recordings, but leave it free
to assess its intensity; in a similar way as human listeners bring
their notion of the four emotions to the experiment, established
through earlier exposure to music, and then judge the intensity
of individual recordings.

To do so, we use a sparse softmax cross-entropy loss calcu-
lated directly from the logits of the output layer. The combination
of cross-entropy loss and mutually exclusive intent makes sure
that weights in the output layer are only updated when the
recording contains their corresponding emotion. This is what
we desire, since songs with aggressive intent can independently
vary in their level of sadness, for instance. In this sense, we
treat the task as a multi-class classification while training, but
we are interested in the relation between emotions as well, not
just the dominant one. Therefore, the outputs for all emotions
are reported individually.

Apart from mimicking the listening test, there are other rea-
sons why we believe the above formulation is the most suitable
for this task. The alternative would be to consider a multi-class,
multi-label setup, where each of the four emotions can inde-
pendently take one of seven values. However, doing so would
make no use of the ordinal relationship between the different
levels of the same emotion. A more pragmatic reason is that it
would also require labelling of intent by the composers for all
four emotions, including levels of negative intent which would
be more challenging, and that it would lead to fewer training
examples per class.

B. Results

We used five-fold cross-validation to test which of the Mag-
naTagATune or the Million Song Dataset was more appropriate
as donor for transfer learning, as well as setting some hy-
perparameters such as batch size and learning rate. The best
performing system was obtained with the MagnaTagATune
dataset, a batch size of 256 and the Adam optimizer with a
learning rate of 0.0001. The mean categorical accuracy including
standard deviation of the raw output for this configuration is
77.280 ± 13.018% for the training splits and 51.756 ± 3.740%
for the validation splits. Since this is the performance on isolated
slices of 3 s, not taking into account that the emotion is known to
be constant for the whole duration of the recording, we calculated
a mean per recording accuracy through soft voting (hard voting
was also tested but gave consistently lower results, though still
higher than the per slice accuracy). The resulting accuracy is
84.172± 13.044% and 59.269± 5.451% for training and valida-
tion, respectively. The confusion matrices for the accuracy after
soft voting can be seen in Fig. 4. We can see that aggressiveness
is relatively easy to distinguish from other emotions, and that
the system has a tendency to overpredict sadness, resulting in
a high accuracy for the latter but also high confusion between
sad and relaxed. This tendency is already visible in the training
data, and gets aggravated in the validation data.

Because the ML model has a continuous output, it has an
advantage in that the chance of it returning two emotions with
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Fig. 4. Aggregate confusion matrices for the optimal network trained with five-fold cross-validation. (a) Training splits (b) Validation splits

TABLE III
PERCENTAGE OF THE LABEL THAT RECEIVED THE HIGHEST RATING BY THE MACHINE LEARNING METHOD AS A FUNCTION OF THE INTENDED EMOTION OF THE

COMPOSER. THE RELATIVE DIFFERENCE WITH RESPECT TO FIG. 4B IS GIVEN BY δ. BOLD INDICATES A MATCH BETWEEN PREDICTIONS AND INTENDED

EMOTIONS. AMBIVALENT RESPONSES CORRESPOND TO RECORDINGS WHERE THE HIGHEST OUTPUT DIDN’T STAND OUT FROM THE

OUTPUTS OF OTHER EMOTIONS

equal intensity level is virtually zero. In contrast, it is clear from
Table II that there is much ambivalence in human emotion recog-
nition. In order to make the comparison between ML model and
humans more fair, we identify ambivalent responses in the ML
output too. To this end, we impose the additional requirement
that the output of strongest emotion needs to stand out from the
outputs of the other emotions. Since the human annotators had
seven levels of intent to choose from, we require the output of
the strongest emotion to be at least 1

7 more than the output of
the second highest in order to be considered unambiguous. The
outcome of this process on the validation data is displayed in
Table III. We can notice the same trends as in the raw output,
namely a clear separation of aggressive and an overprediction
of sad, particularly affecting relaxed.

The introduction of an ambivalent class understandably re-
duces the number of correctly recognised recordings for all emo-
tions. However, it also clears up the confusion matrix in the sense
that comparatively more of the incorrectly recognised emotions
are reassigned to the ambivalent class than correctly recognised
emotions. This is apparent from the δs in Table III, which give the
relative decrease in recognition accuracy compared to the raw
accuracy in Fig. 4(b). We can see that the decrease is stronger for
the off-diagonal elements that for the elements on the diagonal,
except for the degenerate recognition of relaxed. This indicates
that our calculation of emotional ambivalence has the potential

to improve the user experience of MER applications by not
returning a forced choice when ambivalent emotions are present
in a recording, but instead communicating this ambivalence
to the user. When an unambiguous emotion is detected, the
confidence in this decision will then be higher than when no
ambivalence class would be used.

To quantify the significance of the differences in accuracy
between emotions, we conducted an ANOVA analysis with chi-
square distribution on the output recognised as unambiguously
correct. This was performed on a generalized mixed model
fitted with a binomial logistic regression having as a factor the
composer’s intended emotion. The analysis yielded a significant
main effect (χ2(3) = 89.75, p < 0.001). Post hoc tests were
performed on the fitted model using pairwise comparisons ad-
justed with the Tukey correction. Aggressiveness was found to
have a significantly greater percentage of correct identifications
compared to happiness and relaxation (both p < 0.001); for hap-
piness the percentage was significantly greater than relaxation
(p < 0.001); for sadness the percentage was significantly greater
than relaxation (p < 0.001).

To assess the influence of the levels of intent on the accuracy
of the ML model, similarly to the analysis performed on the
human annotations, we conducted another ANOVA analysis
with chi-square distribution. This was performed on a model
fitted with a generalized linear model having as a factor the
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Fig. 5. Percentage of the correct identifications of the ML method as a function
of the intensity of the emotional intent of the composer.

Fig. 6. Mean and standard deviation of the difference between the intensity
value of the emotion expressed by the composers and the ratings of the ML
method regardless of the identification correctness. Legend: * = p < 0.05,
** = p < 0.01, *** = p < 0.001.

composer’s intended emotion intensity. No statistical differences
were found. The percentages of correct identification are illus-
trated in Fig. 5.

Furthermore, we performed an analysis by considering the
difference between the intensity value of the emotion expressed
by the composers and the corresponding raw output values of
the ML method, regardless of whether the output of the intended
emotion was the maximum over all emotions. This analysis
provides a quantification of the error the ML method makes
in identifying the intensity of an emotion originally intended
by composers. Results are illustrated in Fig. 6. We performed
an ANOVA with chi-square distribution on a generalized linear
model having emotion as factor. This yielded a significant main

effect (χ2(3) = 158.37, p < 0.001). Post hoc tests were per-
formed on the fitted model using pairwise comparisons adjusted
with the Tukey correction. Aggressiveness was found to have a
significantly smaller intended vs. machine-perceived difference
compared to happiness, relaxation, and sadness (all p < 0.001),
while for happiness the difference was significantly smaller than
relaxation (p < 0.01) and sadness (p < 0.05).

C. Discussion

The emotion recognition performance of the machine learning
model heavily depends on the emotion. Whereas aggressiveness
and sadness are detected well, the performance on relaxation
is quite poor. There are two potential explanations for this
behaviour, which are non-exclusive. A first is that the donor
model for transfer learning acts as a feature detector. It is possible
that the features learnt on the original dataset (in this case
MagnaTagATune) are not as suitable for detecting relaxation as
they are for other emotions. Although our new guitar dataset is
balanced, the comparatively small amount of data is not enough
to overcome this limitation during the finetuning stage.

A second reason for the difference in performance could be
that the distribution of our training examples is non-optimal.
Due to the complex interrelation between emotions, the balanced
distribution over composer’s intent does not necessarily mean
that the overall presence of emotions is balanced. One observa-
tion supporting this is that when we try training a model from
scratch, without transfer learning, we end up with a degenerate
model predicting relaxed roughly 60% and sad 40% of the time,
regardless of the emotional intent and for both training and
validation splits.

Relaxed and sad also form the most common confusion pair
in our final model, although sad is the most predicted emotion
there. This reversal of most predicted class is likely due to the
difference in training from scratch versus using transfer learning,
indicating that both effects are at play and cannot be seen isolated
from each other.

That said, if we want to further improve the model based
on transfer learning with the musicnn model trained on the
MagnaTagATune dataset, the best course to take would be the
addition of new training examples focusing particularly on sad-
ness and relaxation. The directive to the composer-performers
could even be extended to create examples that are “relaxed, but
not sad” or similar. Adding extra examples of aggressiveness is
unlikely to have to the same benefits per example.

Finally, the level of emotional intent of the composer appears
to be of no significance for the ML model. It is not excluded that
this level can be learnt if it is explicitly presented as a target to
the model, but it does not appear naturally in the output values
of the model. Nonetheless, the clearing up of the confusion
brought by the introduction of an ambivalent class based on
the output demonstrates that the output values provide useful
information about the model.

VI. GENERAL DISCUSSION

Overall, the emotion recognition performance of professional
guitarists was significantly higher than that of non-musicians,
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Fig. 7. Perception of emotions in recordings not explicitly intended to convey that emotion, for (a) both human ratings and (b) machine output.

suggesting the effectiveness of musical expertise in modulating
the ability to recognize an emotion intended by a composer-
performer. This finding is consistent with similar studies re-
ported in the literature [22], [23], which however involved the
less ecologically-valid dataset presented in [16]. In addition,
these results are in line with several previous studies demonstrat-
ing that musical expertise leads to brain plasticity and is effective
in improving music processing as measured by pitch, timing and
timbre discriminations [42]. As the recognition of emotions in
music is based on psychoacoustic cues and musical features,
better identification accuracies were expected for professional
guitarists compared to non-musicians.

Our results also demonstrated that the intensity of the emotion
intended by composers-performers had an effect on the identifi-
cation performances of participants, where significantly higher
recognition accuracies were found for emotions composed and
expressed with higher intensity than those composed and ex-
pressed with lower intensities (see Fig. 2). This result is in line
with the findings reported in [2], which involved both moderately
and highly representative examples of five discrete emotions,
as well as with those of similar non-musical studies conducted
on vocal expression of emotions [43]. These findings suggest
that the lack of control for emotion intensity may account for
some of the inconsistencies in identification accuracies and cue
utilization reported in the literature. Moreover, differences due to
musical expertise were effective in modulating the identification
performances for all the three intensity levels.

Nevertheless, while the identifications of listeners were bet-
ter than chance, they were not highly accurate, especially for
non-musicians. Unintended emotional qualities were judged to
be present in the excerpts in varying degrees and a consistent
portion of the intended emotions was judged by listeners as
ambivalent. This finding differs from others present in the litera-
ture investigating emotions conveyed by individual instruments
(such as [23] and [22]), which utilized synthesized stimuli
varying only the structural details of the composition (e.g.,
mode, dissonance) and not the performance-related expressive
features (e.g., dynamics, attacks) [16]. In contrast, our accura-
cies are in line with those reported in [5], which employed a

similar methodology, although involved only simple melodic
lines played by different individual instruments.

As for the performance of a machine learning model, both
similarities and differences with respect to human listeners
can be identified. Similarly to human listeners’ performances,
aggressiveness is the easiest emotion to identify. In contrast,
the intensity of emotional intent has no relevance for the per-
formance of the ML model. Based on the results in Fig. 4(b),
the ML model seems to significantly outperform professional
musicians on all emotions except relaxation. However, this is
partly due to the model having continuous output, therefore
virtually always avoiding ties. The introduction of the concept
of ambiguity in Table III gives a more nuanced picture in its
comparison with Table II. The amount of ambivalent recordings
has a similar range for human and ML ratings, strengthening our
belief that our derivation for the latter is sensible. Subtracting
these ambivalent recordings from the ML output, the perfor-
mance on aggressive and sad recordings is still clearly better
than human recognition, but happiness gets recognised poorly
compared to a professional musician, and is now in line with
the general population. However, it should be noted that the
relatively high standard deviation of the human ratings makes it
hard to conclude anything decisively.

One observation that could explain the relative ease to recog-
nise aggressiveness for humans and machines alike is the dif-
ference in perception of an emotion when it is not explicitly
intended. In Fig. 7, the ratings and output values of the four
emotions are displayed for those recordings that intend to con-
vey another emotion (so the set of recordings differs between
emotions). In Fig. 7(a), we see that the perception of all emotions
except aggressiveness are symmetric, concentrated around “neu-
tral,” meaning that in the absence of explicit intent, these emo-
tions are perceived present or not present to an equal extent. The
case of aggressiveness is different though: when not explicitly
intended, aggressiveness is perceived more absent than present.
The median values of perception confirm this: aggressiveness
has a median of “a little not” whereas the other emotions have
“neutral” as median value when they are not explicitly intended.
Similarly, the output values of the ML model, shown in Fig. 7
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b, are much more concentrated at zero for aggressive than for
other emotions. Both cases indicate that there are more negative
examples of aggressiveness present in the dataset than of other
emotions, due to the interrelationships between emotions, and
this larger contrast makes it easier to recognise aggressiveness.

The differences between the intended and perceived emotions,
as well as those due to musical training, suggest that deciding
whether a device or application involving a MER system is ap-
propriate for the task should take into account the characteristics
of the users (in particular their musical expertise) as well as their
roles (e.g., composers, performers, listeners). For instance, if the
system is a smart guitar recognizing the emotions expressed
by the player (e.g., for making a query by emotion, similar
to [11]) then it is appropriate to train a machine learning model
on a dataset of emotions intended by composers-performers.
Conversely, the same model would not be appropriate if the
system is a music recommendation application for a music
streaming service, especially if the listener does not have musical
expertise.

It should be noted that the present study involved mostly
Italian participants for both roles of composer-performer and
listener. However, cultural differences may impact the way
in which emotions in music are intended and perceived [44].
Another limitation of our study is the focus on the classical and
acoustic guitar. Further research is thus needed to investigate
the research questions here addressed involving participants
belonging to different cultures along with different individual
musical instruments.

VII. CONCLUSION

The primary objective of the present study was to investigate
to which extent state of the art MER methods are effective
in modeling emotions in the context of individual musical in-
struments. Our investigation required us to distinguish between
intended and perceived emotion and collect human annotated
data for both. These human ratings were then used to conduct
a study regarding the effectiveness of communicating emotion
from composer-performer to listener. It also served as a point of
reference to compare the machine learning model with.

Our results show that the emotion intended by a composer-
performer are not always well recognized by listeners, and in
general not with the same intensity. The intensity with which
an emotion was expressed was proportional to the accuracy
of the listeners. In particular, we found that musical expertise
affects the perception of emotions in music: emotions were
better recognized by musicians rather than listeners with no
musical background with respect to the original intention of the
composer. Such differences between the two groups were found
for different intensities levels of the intended emotions.

No such relation with emotional intensity was observed for
the ML model. For three out of four emotions, the machine
perception of emotions matched or even exceeded human per-
formance, but relaxation proved to be difficult to learn for the
model, already during its training stage. Two possible causes
were postulated, namely limitations on the features learnt by
the donor model and data imbalances arising from complex

interrelations between emotions. The latter can potentially be
remedied by adding new training data created according to
precise directives. Meanwhile, the output values of the model
can be used to identify ambivalent emotions.

In future work we plan to extend the results of the present
study by utilizing different types of individual musical instru-
ments as well as involving participants from different cultures.
We also plan to create MER models for the listener’s perception,
potentially on the level of individual users. Further areas to
explore include the creation of models based on the specific
expertise of the composer-performer, distinguishing beginners
and intermediate musicians. Finally, we plan to improve the
accuracy of the MER systems by including the latest ML tech-
niques such as attention and compare them with systems based
on handcrafted features such as the ones described in [29].

The raw data supporting the conclusions of this manuscript
will be made available by the authors to any qualified researcher.
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