
ENGINEERING REPORTS L. Vignati, S. Zambon, and L. Turchet, “A Comparison of Real-Time Linux-Based
Architectures for Embedded Musical Applications”

J. Audio Eng. Soc., vol. 70, no. 1/2, pp. 83–93, (2022 January/February).
DOI: https://doi.org/10.17743/jaes.2021.0052

A Comparison of Real-Time Linux-Based
Architectures for Embedded Musical Applications

LUCA VIGNATI,
(luca.vignati@unitn.it)

STEFANO ZAMBON,
(stefano@elk.audio)

AND LUCA TURCHET, AES Associate Member
(luca.turchet@unitn.it)

Department of Information Engineering and Computer Science, University of Trento, Trento, Italy Modern Ancient
Instruments Networked dba Elk, Stockholm

The Internet of Things (IoT) is fostering advancements in the embedded systems world,
widening the range of available single-board computers and lowering their price. The Internet
of Musical Things (IoMusT), the IoT musical counterpart, is thriving as well with more and
more examples of embedded devices useful to build connected musical interfaces. For this
purpose, real-time architectures based on the Linux operating system are increasingly used.
In this paper, we compare two radically different approaches to real-time Linux audio: one
system is based on the PREEMPT RT patch and the ALSA framework and the other on
the Xenomai patch and the Elk Audio OS. Our study aims at providing audio developers
working on IoMusT devices and applications with a clear quantitative picture of how these two
systems compare. Our results reveal that Xenomai provides lower audio round-trip latency,
lower scheduling latency, and manages to exploit more CPU performance at a given latency
setting while guaranteeing perfect audio quality. Nevertheless, PREEMPT RT still delivers
good performance, and it is widely supported resulting in a more accessible alternative. All
the tests have been carried out on the Raspberry Pi 4B single-board computer combined with
the HiFiBerry expansion HAT.

0 INTRODUCTION

The increasing availability of single-board computers
and audio prototyping tools have fostered the development
of embedded audio frameworks specifically targeting the
design and construction of digital musical instruments [1].
In the past few years various Linux-based platforms have
been proposed for this purpose, mainly targeting the mak-
ers community (for a recent comparative study see [2]). A
prominent example is Satellite CCRMA [3, 4], which is
based on Raspberry Pi or BeagleBoard xM single-board
computers connected via a serial port to an Arduino mi-
crocontroller and uses open-source software for generating
audio. Another similar platform is Prynth [5].

Currently, one of the most advanced platforms in this
space (see [2]) is represented by Bela [6, 7], a platform
based on the BeagleBone Black single-board computer,
which is extended with a custom expansion board featur-
ing stereo audio, eight channels each of 16-bit ADC and
16-bit DAC for sensors and actuators, an I2C port, and
16 GPIO channels. The CTAG face 2|4 [8] is a similar
project also based on the BeagleBone that features a high

number of analog inputs and outputs. To achieve latencies
below 1 ms, they both use the Xenomai real-time kernel
extension, which according to the study reported in [9] is
the best-performing of the hard real-time Linux environ-
ments. Another approach based on Xenomai is Elk Audio
OS [10], an operating system that explicitly targets low-
latency and high-quality audio applications and eases de-
velopment across a wide range of embedded hardware.

The frameworks reviewed here are relevant to the con-
struction of a specific class of digital musical instruments,
the so-called Musical Things, which belongs to the Internet
of Musical Things (IoMusT) paradigm [11]. The IoMusT
is an emerging research field positioned at the intersection
of the Internet of Things (IoT) and music technology and
relates to ecosystems of computing devices embedded in
physical objects (Musical Things) dedicated to the produc-
tion and/or reception of musical content. An example of
Musical Things is represented by the class of “smart mu-
sical instruments” [12], a family of musical instruments
based on embedded systems, which are envisioned to have
advanced context-aware and proactive capabilities. Exist-
ing instances of such kinds of Musical Things are the Sen-

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 83

VIGNATI ET AL. ENGINEERING REPORTS

sus Smart Guitar developed by Elk [13], other prototypes
of smart guitars developed in academic contexts (see e.g.,
[14]), or the Smart Cajón reported in [15].

The development of a Musical Thing, such as a smart mu-
sical instrument, is rooted in the embedded hardware and
software platform utilized for low-latency audio and sensor
processing as well as wireless connectivity. As the Inter-
net of Musical Things (IoMusT) emerges, audio-specific
operating systems are required to ease the development
and portability of IoMusT applications on embedded hard-
ware. The increasing availability of low-cost System-on-
Chip (SoCs) tailored for the IoT market makes the use of
Linux more and more appealing for smart musical instru-
ments development. This marks a transition from dedicated
DSP systems (widely adopted in the music tech industry)
to Linux-based real-time systems, which is made possible
thanks to a few frameworks that modify or integrate with
Linux to overcome its inherent non–real-time nature.

In this paper, we study the performance of two Linux-
based architectures for real-time embedded audio, based
respectively on the Xenomai framework and the PRE-
EMPT RT patch [16]. We aim at comparing their full stack
of Xenomai and RASPA (Elk’s audio API) against PRE-
EMPT RT, ALSA/Jack, and the POSIX synchronization
primitives. We are interested in quantifying the difference
among them in the context of real-time embedded audio,
which is something new compared with previous studies
that focused only on task-scheduling performance [9]. In
particular we are interested in FX processing use cases,
which require synchronous input/output operation. More-
over, the benchmark environment described in this paper
is fully reproducible because it completely relies on open-
source software and widely available hardware. Therefore,
such an environment could be used to further validate our
results as well as to compare other hardware/software archi-
tecture with the one we used in this work. We paid special
attention to guaranteeing the fairness and reproducibility
of this comparison by tuning both systems to the best of
our effort and using the same version of common software
when possible.

The remainder of this paper is structured as follows. In
Sec. 1 we discuss Xenomai and PREEMPT RT, and Sec.
2 presents a detailed description of the architectures of the
two tested systems. Sec. 3 details test methodologies and
results, and finally, we draw concluding remarks in Sec. 4.

1 SELECTED PLATFORMS

1.1 PREEMPT RT
PREEMPT RT is a set of patches for the Linux ker-

nel developed by a group of kernel developers. The project
was started by Ingo Molnar, and the first release was based
on kernel version 2.6.11 (March 2005). The goal of this
project is to trade the throughput of the system with pre-
dictability and low latency operation while maintaining the
single-kernel approach to allow developers to write (user-
space) real-time applications easily. In more detail, the
PREEMPT RT patch allows the real-time tasks to preempt

the kernel everywhere, even in critical sections. However,
some regions can still remain non-preemptible, like the top-
half of interrupt handlers and the regions protected by raw
spinlocks. During the development of the PREEMPT RT
patch, besides the new features introduced, several positive
side effects have been observed. The systems in which this
patch is applied are more sensitive to bugs due to latency
constraints [17], allowing the kernel developers to use the
patch as a stress-testing tool to discover more easily the
bottlenecks of the kernel itself. Moreover, the patch intro-
duced several scheduler improvements and analysis tools
in the mainline kernel [16].

1.2 Xenomai
Released in 2002 by Philippe Gerum, Xenomai [18] is a

layer that enables real-time in user-space. It currently sup-
ports more recent architectures than other frameworks such
as RTAI: x86, x86 64, ARM, PowerPC, and ia64. Xeno-
mai initially relied on the ADEOS layer [19], but in recent
versions, only a simplified part of it has been maintained,
in particular the interrupt-delivery subsystem called I-pipe
(interrupt pipeline). The last version of Xenomai (version
3, released in 2015) allows the user to choose between the
Cobalt (dual-kernel) and Mercury (single-kernel) setups. In
the latter version, there is only one kernel carrying out both
real-time and non–real-time tasks, so all the determinism
improvement is delegated to the PREEMPT RT patch. Be-
cause using a Mercury kernel on a PREEMPT RT Linux
provides virtually no gain in real-time performances com-
pared to a PREEMPT RT Linux, we will use the more per-
forming Cobalt (dual-kernel) setup for Xenomai. Philippe
Gerum is now working on an evolution of the Xenomai/I-
pipe framework called EVL Project [20], which represents
the future of Xenomai.

2 SYSTEM ARCHITECTURE

This section describes the architectures considered in
this study, both hardware and software.

2.1 HARDWARE ARCHITECTURE
2.1.1 Raspberry Pi 4 Model B

The single-board computer (SBC) we chose for the study
is the Raspberry Pi 4 Model B. Its SoC from Broadcom
(BCM2711) features 4 ARM Cortex-A72 working at 1.5
GHz as well as many peripherals including the Inter-IC
Sound (I2S), Serial Peripheral Interface (SPI), and Inter-
Integrated Circuit (I2C). This model is available with three
RAM sizes: 2, 4, and 8 GB. We did not have demanding
requirements in terms of memory for this project so we
picked the 2-GB model because it is likely to be the most
widespread. The board provides additional handy features
such as UART, Ethernet Wi-Fi, and Bluetooth connectivity,
USB2, USB3, dual 4K video output, and the signature 40
pins Raspberry Pi GPIO connector.

84 J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February

ENGINEERING REPORTS COMPARISON OF REAL-TIME LINUX-BASED ARCHITECTURES

2.1.2 HiFiBerry DAC+ ADC PRO
To extend the audio capabilities of the system, we used

the DAC+ ADC PRO expansion board by HiFiBerry [21],
which complies with the hardware-attached-on-top (HAT)
specification, so it can be connected to the Raspberry Pi
through its 40-pin connector. The DAC+ ADC PRO HAT
board provides two output channels with RCA connectors
and two input channels with one 3.5-mm stereo jack plug.

At the heart of the DAC+ ADC PRO are two integrated
circuits: the TI-PCM1863 2-Channel ADC and the TI-
PCM5122 Audio Stereo DAC. They both work with sam-
pling frequencies up to 196 kHz and 24-bit Audio Data.
The audio data transfer interface is I2S, and the ICs can
be configured via SPI or I2C. They also feature selectable
digital-filter latency, which will be discussed in Sec. 3.2.3.

2.2 SOFTWARE ARCHITECTURE
We chose to use 48 kHz as the sampling frequency of

both systems because it is the most widespread among au-
dio equipment. Both systems use a 32-bit floating-point
precision for audio processing and use the same int to float
conversion algorithm.

2.2.1 SUSHI
In both systems, the top-level component is SUSHI [22].

It is a real-time audio plugin host developed by Elk that sup-
ports multiple plugin standards. It also features advanced
audio and MIDI routing, a simple scripting setup, and is
written to ensure high performance and stability under low-
latency conditions. It can be controlled through MIDI, OSC,
or gRPC [23] protocols, and it is compatible out of the box
with both tested systems. This is made possible by its mul-
tiple audio frontends, among which there are RASPA and
Jack. Thanks to its specific capabilities, SUSHI enabled us
to run the exact same code on both systems leveraging its
compatibility with PREEMPT RT through Jack, and with
Xenomai through RASPA. Moreover, SUSHI uses a timer
to provide accurate information on the ongoing DSP load,
from which we fetched the measurements used in Sec. 3.2.
For multithreaded work, SUSHI relies on TWINE [24], a li-
brary for parallel computing. TWINE uses a high-level API
to provide a dual implementation for both Xenomai’s and
POSIX’s synchronization primitives to synchronize parallel
tasks.

2.2.2 PREEMPT RT System
This architecture features the Linux kernel patched with

the PREEMPT RT patch, the Advanced Linux Sound Ar-
chitecture (ALSA [25]) framework, and the Jack audio
server [26]. This is the most widespread approach to real-
time audio for Linux mainly due to its simplicity and ease of
use, and recently the PREEMPT RT patch made its way into
the mainline kernel, affirming itself as the main real-time
solution for the Linux kernel. We used the PREEMPT RT
patch version 4.19.127-rt55 to patch the Linux kernel ver-
sion 4.16.127 in order to get the real-time–enabled kernel.
One of the most significant advantages of this mainline
kernel architecture is the possibility to leverage the ALSA

ALSA Kernel Driver

ADC/DAC

Kernel Space

Userland
ALSA Driver Access Library

SUSHI

ADC/DAC

RTDM Audio Driver

RASPA Driver Access Library

SUSHIJack

Hardware

Fig. 1. Driver architecture of the two systems. ALSA is the Ad-
vanced Linux Sound Architecture, RASPA is the RTDM Audio-
over-SP; API, RTDM is Xenomai’s Real-Time Driver Model;
DAC is the Digital to Analog Converter; and ADC is the Ana-
log to Digital Converter.

framework connecting the codec driver with the machine
and platform drivers, all already available. Although the
driver may need a few adjustments, this is a much simpler
task than writing it from scratch.

Our interest resides in synchronous operation for FX
processing, so simultaneous input and output handling is
required. ALSA, however, is asynchronous in its nature,
meaning that the synchronization between input and output
is left to the user-space application. For this reason, we
needed to use Jack in order to connect ALSA to SUSHI.
As it is shown in Fig. 1, Jack with the ALSA framework
constitutes the synchronous audio mechanism required for
SUSHI to run. When started, Jack creates a real-time thread
with priority -11. The drivers of the HiFiBerry support
buffer sizes as small as 64 samples, so lower buffer size
settings can not be achieved by this system. Core isolation
techniques were also adopted to force every process on
the system to run on the first core leaving the other cores
dedicated to the real-time tasks. Interrupt requests were
isolated similarly, changing the core affinity of the DMA
interrupts used by the audio drivers, and setting their priority
to 85.

2.2.3 Xenomai System
For the Xenomai system, we used the Elk Audio OS

0.9.5, developed by Elk [10, 27]. At its core, Linux ver-
sion 4.19.126 is patched with the Xenomai patches version
v3.1-rc4, introducing Xenomai’s Cobalt real-time co-kernel
along with Linux’s standard non–real-time kernel. It also
features a custom RTDM audio driver and Raspa, a custom
userspace library that manages audio formats and mem-
ory allocation for audio applications. The RTDM audio
driver handles the interrupts triggered by the SPI periph-
erals, and Raspa provides the user-space with the virtual
memory translation of the static address where the sam-
ples are placed by the DMA. The RTDM framework makes
it possible to do this from the Cobalt real-time core. The
buffer sizes, expressed in samples, that are supported by the
custom RTDM audio driver are the following: 16, 32, 64,
128, 256, and 512. We also enforced the same core isola-
tion rule we deployed on the PREEMPT RT system even

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 85

VIGNATI ET AL. ENGINEERING REPORTS

if it is not critical to this system because we wanted the
two systems to experience the same kind and level of stress
during the tests.

3 PERFORMANCE COMPARISON

There are three metrics used in this study: DSP load,
scheduling latency, and round-trip latency (RTL). For each
of these metrics, one or more tests have been carried out. In
the following two subsections we will detail the measure-
ment procedure and setup and finally the results of each of
them.

3.1 MEASUREMENT PROCEDURE AND SETUP

3.1.1 DSP Load Test
This test aims to measure the maximum DSP load a

system can reliably sustain without incurring in underruns
(from now on called Xruns) with varying buffer sizes, core
count, and plugin type. The variables at play in these tests
are the following:

� buffer size: it indicates the size in audio frames of
the buffer delivered at every interrupt, so for a given
sampling rate (48 kHz in our case) it defines the
window of available time between interrupts. For
Xenomai we tested buffer sizes of 16, 32, 64, 128,
256, and 512, whereas for PREEMPT RT only 64,
128, 256, and 512, because 16 and 32 are not sup-
ported by the ALSA drivers for HiFiBerry and buffer
sizes higher than 512 samples result in a latency that
is not interesting for our use case.

� number of tracks: multiple plugins can be instan-
tiated in series (on the same audio track) and/or in
parallel (on separate audio tracks). Because we are
interested in the performance at varying core count,
we used one track per processing core and we tested
the systems varying the number of available tracks,
with the same number of plugin instances per track.
On PREEMPT RT we tested from one track to three
because one core was reserved for non–real-time
tasks, whereas on Xenomai we could test up to four
because of the dual-kernel approach.

� maximum number of plugin instances per track:
A higher number of plugin instances results in a
higher DSP load, so we mainly used the instance
count to vary the DSP load conditions in the tests.
Moreover, because we are interested in the maxi-
mum DSP load without incurring in Xruns, we are
only interested in the maximum number of plugin
instances per track that do not generate Xruns.

� plugin type: to test the system under different kinds
of load we selected a plugin from the examples li-
brary of Faust [28] called “reverbDesigner” [29]. It
exposes three parameters (N, NB, and BSO, more
details can be found on the Faust GitHub page) that
can be set at compile-time, directly affecting the DSP
load of the resulting plugin. We compiled two ver-
sions of the plugin: a light version with N = 8, NB

= 5, and BSO = 3 and a heavier version with N =
16, NB = 5, and BSO = 3. The entire test suite was
performed using one version of the plugin and then
repeated using the other.

The tests were conducted as follows: For each triplet of
buffer size, number of tracks, and plugin type, we carried
out multiple tests of 10 min to find the maximum number
of plugin instances per track that does not generate Xruns.
In real-world scenarios, the non–real-time part of the OS
is typically involved in other activities such as networking
and UI management, so we conducted each test while the
system was undergoing a stress load generated by a stress
generator tool called stress-ng. We used the following
command:

$ stress-ng --sched other --cpu 1 --udp 1 --io 1 --netdev
1 --aggressive --maximize

where --sched other runs every stressor as a non-real-
time process, --cpu, --io, --netdev, and --udp instanti-
ate one instance per stressor of, respectively, CPU, I/O, the
network device, and UDP traffic. Finally, we validated the
results obtained from the 10-min tests by rerunning all the
tests for 2 h each, resulting in a total of 144 h of tests.

3.1.2 Scheduling Latency Test
The tool used to measure interrupt latency is c y c

l i c t e s t. It measures the amount of time that
passes between a timer-driven interrupt and its handling by
a userspace task. It does that by i) taking a time snapshot
when starting to wait for a specific time interval (t1); ii)
taking another time snapshot when the timer finishes (t2);
iii) comparing the theoretical wakeup time with the actual
wakeup time (t2 -(t1 + sleep time)); this value is the latency
for that timer wakeup.
c y c l i c t e s t was chosen also because

Xenomai provides it, along with its user-space libraries,
already compiled to run in the cobalt kernel, so it was the
obvious choice for comparing the two systems. Two iden-
tical tests lasting over 5 h each have been conducted on the
two systems with the following command:

$ c y c l i c t e s t -l100000000 -m -S -p 90 -i200 -h400

where -l100000000 sets the total number of test itera-
tions to 108, -m locks current and future memory alloca-
tions, -S enables SMP (Symmetric MultiProcessing) test-
ing, -p 90 sets the process priority to 90, -i200 sets the
time interval between interrupts to be 200 μs, and -h400
dumps a latency histogram to stdout, tracking up to 400 μs.

Again, during this test the system was undergoing the
load generated by the following command:

$ stress-ng --sched other --cpu 1 --udp 1 --io 1 --netdev
1 --aggressive --maximize

86 J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February

ENGINEERING REPORTS COMPARISON OF REAL-TIME LINUX-BASED ARCHITECTURES

3.1.3 RTL
To measure RTL, we used the jack iodelay tool in-

cluded in Jack2. This is a small command-line Jack app by
Fons Adriaensen that measures the RTL of sound cards. The
app consists of a DSP algorithm that does not measure in-
stantaneous delay but rather leverages the Chinese Remain-
der Theorem on multiple sine waves at specific frequencies
to measure the phase delay over a long period of time [30].
This technique allows for very high accuracy that is esti-
mated by the author to be roughly 1/1000 of a sample. We
performed the measurements for both the PREEMPT RT
and Xenomai systems using an external computer. The RTL
of the external computer is measured first, then subtracted
from the final results. This way the latency of the external
system cancels out so it is not relevant for the final results.

3.2 RESULTS
This section presents the results obtained from the tests

on DSP load, interrupt latency, and RTL, respectively. As
far as the performance comparison between the two sys-
tems is concerned, we found these results to adhere to
what we expected from previous studies [9] in terms of
task-scheduling latency. In fact, Xenomai is better in every
single test. However, we found more interesting differences
between the two systems in terms of overall DSP perfor-
mance when combined with a real-time audio driver.

3.2.1 DSP Load
The results of these tests are presented throughout the

graphs in Fig. 2. They are organized in pairs, one per buffer
size setting, for a total of six pairs. On each pair, the leftmost
graph shows the maximum number of instances per track
on the y-axis and the number of parallel tracks on the x-
axis. Apart from the first two pairs (16 and 32 samples),
each graph shows four series of data, respectively:

� Xenomai Light: these are the results of the tests per-
formed on the Xenomai system using, instances of
the less DSP intensive version of the reverbDesigner
plugin.

� PREEMPT RT Light: these are the results of the
tests performed on the PREEMPT RT system, using
instances of the less DSP intensive version of the
reverbDesigner plugin.

� Xenomai Heavy: these are the results of the tests
performed on the Xenomai system using, instances
of the more DSP intensive version of the reverbDe-
signer plugin.

� PREEMPT RT heavy: these are the results of the
tests performed on the PREEMPT RT system, using
instances of the more DSP intensive version of the
reverbDesigner plugin.

At a first glance, the absence of PREEMPT RT data
in the first two pairs of graphs is evident. This already
shows a significant advantage of the Xenomai system, as it
can operate at buffer sizes as low as 16 samples, whereas
the PREEMPT RT system only supports buffer sizes of

64 samples and above. Moreover, looking at Fig. 2a, we
can notice that the Xenomai system can run as many as
five “heavy” and 11 “light” plugin instances in single-core
operation, whereas it can run as many as 16 “heavy” and 32
“light” plugin instances when evenly spread across the four
cores. As it is possible to notice from Fig. 2b, even with the
very tight constraints of working with a buffer size of 16
samples, Xenomai manages to reliably sustain a DSP load
of more than 85%.

To analyze results from PREEMPT RT we have to look
at the third pair of graphs, showing the test results in
which 64 samples were used as the buffer size. Fig. 2e
shows that in this setting PREEMPT RT presents simi-
lar results to those that Xenomai provides when working
at 16 samples of buffer size. In fact, Fig. 2f shows that
the DSP load that PREEMPT RT is capable of reliably
carrying out is much lower, sitting below 75%. Addition-
ally, it is possible to notice that PREEMPT RT cannot run
four parallel tracks because of its isolated non–real-time
core that should not sustain any real-time load. Because of
this, the maximum number of plugin instances across all
tracks that the PREEMPT RT system can sustain is smaller
(27 for “light” and 12 for “heavy” plugin instances) be-
cause it has only three available real-time cores instead
of four.

Increasing the number of parallel tracks leads to higher
average DSP loads per instance, due to the cost of activation
of additional threads at every interrupt callback and to the
cache trashing resulting from the L2 cache being shared
among all four cores. This can be seen in any rightmost
graph of each pair, looking at the upward trend of the aver-
age DSP load per instance at the growing number of parallel
tracks.

Increasing the buffer size leads to more plugin instances
per track being sustained and higher average DSP loads be-
ing reliably tolerated by both systems, whereas the average
DSP load per instance decreases as the time between audio
interrupts widens. Increasing the buffer size also reduces
the performance gap between the two systems, leading to
the last pair of graphs where we can see that PREEMPT RT
almost matches the performance of Xenomai.

Also, Fig. 2l shows that when the two systems run the
same number of plugin instances, the average DSP load
of PREEMPT RT is slightly higher than that of Xenomai.
This is likely due to the much smaller average schedul-
ing latency and the guarantee of never preempting real-
time tasks provided by Xenomai leading to fewer context
switches resulting in less overhead. Both SUSHI and the
selected plugin are written in a real-time safe without any
mode switch and we further confirmed using Xenomai’s
process monitor services during the tests. Mode switches
happen in dual-kernel systems such as Xenomai whenever
a task running in the real-time core performs a call that re-
quires the system to switch to the non-real-time core. This
results in a significant overhead and performance penalty.

As expected, Xenomai is better in different aspects. Nev-
ertheless, we believe that the reported results are also quite
usable in many scenarios for the PREEMPT RT system be-
cause it is still able to handle reasonably high DSP loads

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 87

VIGNATI ET AL. ENGINEERING REPORTS

Fig. 2. DSP load results. (a) Xenomai manages to run up to 11 plugin instances in a single track and up to 32 over four parallel tracks. (b)
The average DSP load per plugin instance grows with the number of parallel tracks due to the overhead of managing multiple threads
and cache trashing. (c) With higher buffer sizes more plugin instances are sustained by the system. (d) Increasing the buffer size extends
the time between audio interrupts, reducing the overhead associated with that. As a result, the average DSP load per plugin instance is
lower. (e) At 64 samples, PREEMPT_RT is very affected by the overhead associated with the parallel tracks. In fact, we can see that the
maximum number of plugin instances per track significantly reduces from 1 to 3 tracks. (f) As we can see, the PREEMPT_RT average
DSP load per plugin instance is always slightly above that of Xenomai. This is because of its smaller scheduling latency and absolute
prioritization of real-time tasks (g) As we can see, the behavior of the systems when running the “light” and the “heavy” versions of
the plugin is very consistent. (h) The gap between Xenomai and PREEMPT_RT narrows down as the buffer size increases because
the scheduling latency and other advantages of Xenomai become less and less relevant in a less interrupt-intensive scenario. (i) The
PREEMPT_RT system is still heavily affected by the overhead of multiple parallel tracks, especially when running the “heavy” version
of the plugin. (j) The difference in average DSP load per plugin instance between the PREEMPT_RT and Xenomai is almost negligible
but is still appreciable. (k) PREEMPT_RT has almost closed the gap between itself and Xenomai, but still suffers some penalty when
running three parallel tracks. (l) The two systems have almost identical behavior in terms of average DSP load per plugin instance. DSP
stands for Digital Signal Processing.

88 J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February

ENGINEERING REPORTS COMPARISON OF REAL-TIME LINUX-BASED ARCHITECTURES

Fig. 2. (continued)

with the same level of reliability that Xenomai provides
(0 Xruns).

3.2.2 Interrupt Latency
The results of the test described in Sec. 3.1.2 are shown

in Fig. 3a and Fig. 3b. They show the overall superiority of
Xenomai when it comes to scheduling latency, as well as the
effectiveness of the core isolation on PREEMPT RT. Fig. 3a
shows the probability distribution of the interrupt latency
of the PREEMPT RT system. As it is possible to notice,

there is a considerable difference between the behavior of
the first core and the other three. This is because CPU1 is
bearing all the load of the system, whereas the others have
been isolated; hence, they are only dealing with the latency
test and its interrupt.

Fig 3b shows the clear superiority of Xenomai both in
the worst-case and the average scheduling latency. In fact,
Xenomai manages to guarantee a worst-case latency of 12
μs, whereas PREEMPT RT presents a worst-case latency
of 20 μs, and the average scheduling latency for Xenomai

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 89

VIGNATI ET AL. ENGINEERING REPORTS

 1

 10

 100

 1000

 10000

 100000

 1x10 6

 1x10 7

 1x10 8

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

la
te

n
cy

 s
a

m
p

le
s

Latency [µs]

PREEMPT_RT's Scheduling Latency

 CPU1
 CPU2
 CPU3
 CPU4

(a)

 1

 10

 100

 1000

 10000

 100000

 1x10 6

 1x10 7

 1x10 8

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

la
te

n
cy

 s
a

m
p

le
s

Latency [µs]

Xenomai's Scheduling Latency

 CPU1
 CPU2
 CPU3
 CPU4

(b)

Fig. 3. Results of the scheduling latency tests. Scheduling latency
on the Xenomai system. The worst-case latency is 12μs and the
average is 2:5μs.

and PREEMPT RT, respectively, are 2.5 μs and 6.5 μs. The
nonisolated CPU1 presents a slightly worse behavior due to
the heavy load it is experiencing, but the dual-kernel nature
of Xenomai alleviates the difference between the isolated
and nonisolated cores. Overall, both systems present solid
performance in this test, and the difference among them is
smaller than expected.

3.2.3 RTL
The RTL is the latency resulting from the sum of all the

delays of the system. In this case:

RTL = 2 ∗ buffer size/ fs + I2S buffer latency +
+ codec latency (1)

Table 1. RTL result comparison between the two systems.

(a) RTL, measured in milliseconds.

Buffer Size PREEMPT RT Xenomai

16 - 1.2
32 - 1.86
64 3.34 3.2
128 6 5.86
256 11.34 11.2
512 22 21.86

(b) RTL, measured in samples.

Buffer Size PREEMPT RT Xenomai

16 - 57
32 - 89
64 160 153
128 288 281
256 544 537
512 1,056 1,049

The measures of the RTL on both systems are detailed
in Table 1. As it is possible to notice, the RTLs of the two
systems are very close to each other, as expected because
they are running with the same buffer sizes on the same
hardware. The small difference between them is due to
how each system configures the RX and TX FIFO buffers
of the I2S peripheral. The PREEMPT RT system uses the
stock I2S driver, which needs those buffers to be higher to
compensate for the higher interrupt latency of non–real-
time systems (i.e., it needs to work on the standard Linux
kernel as well). Elk Audio OS, on the other hand, can rely
on the bounded interrupt latency that Xenomai guarantees
and use smaller buffers on the I2S peripheral.

The I2S buffer latency on the PREEMPT RT system
is 20 samples, whereas on the Xenomai system, it is 13
samples, resulting in the 7-sample difference we can see
in 2. Because the HiFiBerry Linux driver allows to set the
latency of the filters on the DAC/ADC, we were able to
match the configuration on both systems, resulting in a
latency of two samples for the ADC and 10 samples for the
DAC.

The total latency introduced by the I2S buffer latency and
the codec latency is as follows for the Xenomai system:

13

fs
+ 2 + 10

fs
= 0.52 ms (2)

and for the PREEMPT RT system:

20

fs
+ 2 + 10

fs
= 0.66 ms (3)

with fs = 48 kHz. Looking at Table 1, we can see that the
Xenomai system can achieve latencies as low as 1.2 ms,
whereas the PREEMPT RT system can only go down to
3.34 ms.

90 J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February

ENGINEERING REPORTS COMPARISON OF REAL-TIME LINUX-BASED ARCHITECTURES

4 CONCLUSION

In this paper, we compared the full stack of Xenomai,
Raspa, and Xenomai’s synchronization primitives against
PREEMPT RT, ALSA/Jack, and the POSIX synchroniza-
tion primitive, aiming to quantify the difference among
them in terms of DSP load, scheduling latency, and RTL
Our results are in agreement with the ones from the study
reported in [9], confirming the performance-wise superior-
ity of Xenomai over the PREEMPT RT patch. Xenomai,
in fact, can provide lower RTL (1.2 ms), lower schedul-
ing latency (worst-case 12 μs), and sustain very high DSP
loads at small buffer sizes (over 85% average DSP load at
16 samples).

The ability of the Xenomai system to deliver such uncom-
promising performance is the reason why it is the backbone
of high-performance systems such as Bela [6, 7], CTAG
face 2|4 [8], or Elk Audio OS [27]. On the other end, PRE-
EMPT RT is very close behind still managing to provide
very low RTL (3.34 ms) and very low scheduling latency
(20 μs) and sustains still relatively high DSP loads at small
buffer sizes (over 70% average DSP load at 64 samples).
Although not suggested for safety-critical industrial appli-
cations [16], the performance it can deliver and its ease of
use make it a good candidate for any application that does
not really need the highest performance and lowest latency
out of a system.

To conclude, both systems are viable building blocks
of IoMusT-enabled devices because they can manage real-
time audio as well as sensors and networking, but they cover
different areas of the performance/complexity space.

5 ACKNOWLEDGMENT

The authors wish to thank the technical team of Elk for
having provided technical support for this study.

6 REFERENCES

[1] E. Miranda and M. Wanderley, New Digital Musical
Instruments: Control and Interaction beyond the Keyboard,
Computer Music and Digital Audio Series, vol. 21 (A-R
Editions, Inc., Middleton, Wisconsin, 2006).

[2] E. Meneses, J. Wang, S. Freire, and M. M. Wander-
ley, “A Comparison of Open-Source Linux Frameworks
for an Augmented Musical Instrument Implementation,” in
Proceedings of the Conference on New Interfaces for Mu-
sical Expression, pp. 222–227 (Porto Alegre, Brazil) (2019
Jun.). https://doi.org/10.5281/zenodo.3672934.

[3] E. Berdahl and W. Ju, “Satellite CCRMA: A Musical
Interaction and Sound Synthesis Platform,” in A. Jense-
nius, M. Lyons (Eds.), A NIME Reader, Current Research
in Systematic Musicology, vol. 3, pp. 373–389 (Springer,
Cham, Switzerland, 2011). https://doi.org/10.1007/
978-3-319-47214-0_24.

[4] E. Berdahl, S. Salazar, and M. Borins, “Embed-
ded Networking and Hardware-Accelerated Graphics with
Satellite CCRMA,” in Proceedings of the Conference
on New Interfaces for Musical Expression, pp. 325–330

(Daejeon, Republic of Korea) (2013 Jun.). https://doi.org/
10.5281/zenodo.1178476.

[5] I. Franco and M. Wanderley, “Prynth: A Framework
for Self-Contained Digital Music Instruments,” in M. Ara-
maki, R. Kronland-Martinet, S. Ystad (Eds.), Bridging Peo-
ple and Sound, pp. 357–370 (Springer, Cham, Switzerland,
2016). http://dx.doi.org/10.1007/978-3-319-67738-5_22.

[6] A. McPherson and V. Zappi, “An Environment for
Submillisecond-Latency Audio and Sensor Processing on
BeagleBone Black,” presented at the Audio Engineering So-
ciety Convention 138 (2015 May), conference paper 9331.

[7] A. McPherson, R. Jack, and G. Moro, “Action-
Sound Latency: Are Our Tools Fast Enough?” in Pro-
ceedings of the Conference on New Interfaces for Mu-
sical Expression, pp. 20–25 (2016 Jul.). https://doi.org/
10.5281/zenodo.3964611.

[8] H. Langer and R. Manzke, “Embedded Multichan-
nel Linux Audiosystem for Musical Applications,” J. Au-
dio Eng. Soc., vol. 66, no. 4, pp. 286–291 (2018 Apr.).
https://doi.org/10.17743/jaes.2018.0022.

[9] J. Brown and B. Martin, “How Fast is Fast Enough?
Choosing between Xenomai and Linux for Real-Time Ap-
plications,” in Proceedings of the 12th Real-Time Linux
Workshop (Nairobi, Kenya) (2010 Oct.).

[10] L. Turchet and C. Fischione, “Elk Audio OS: An
Open Source Operating System for the Internet of Musical
Things,” ACM Trans. Internet Things, vol. 2, no. 2, pp.
1–18 (2021 May). https://doi.org/10.1145/3446393.

[11] L. Turchet, C. Fischione, G. Essl, D. Keller, and
M. Barthet, “Internet of Musical Things: Vision and Chal-
lenges,” IEEE Access, vol. 6, pp. 61994–62017 (2018 Sep.).
https://doi.org/10.1109/ACCESS.2018.2872625.

[12] L. Turchet, “Smart Musical Instruments: vision,
design principles, and future directions,” IEEE Access,
vol. 7, pp. 8944–8963 (2018 Oct.). https://doi.org/10.1109/
ACCESS.2018.2876891.

[13] L. Turchet, M. Benincaso, and C. Fischione,
“Examples of Use Cases with Smart Instruments,” in
Proceedings of the 12th International Audio Mostly
Conference on Augmented and Participatory Sound
and Music Experiences, pp. 1–5 (London, United
Kingdom) (2017 Aug.). https://doi.org/10.1145/3123514.
3123553.

[14] L. Turchet, J. Pauwels, C. Fischione, and G.
Fazekas, “Cloud-Smart Musical Instrument Interactions:
Querying a Large Music Collection with a Smart Guitar,”
ACM Trans. Internet Things, vol. 1, no. 3, pp. 1–29 (2020
Jul.). https://doi.org/10.1145/3377881.

[15] L. Turchet, A. McPherson, M. Barthet and,
“Real-Time Hit Classification in a Smart Cajón,”
Front. ICT, vol. 5, no. 16 (2018 Jul.). https://doi.org/
10.3389/fict.2018.00016.

[16] F. Reghenzani, G. Massari, and W. Fornaciari, “The
Real-Time Linux Kernel: A Survey on PREEMPT RT,”
ACM Comput Surv, vol. 52, no. 1, pp. 1–36 (2019 Feb.).
https://doi.org/10.1145/3297714.

[17] L. C. R. Gonçalves and A. C. de Melo, “Applica-
tion Testing under Realtime Linux,” presented at the Linux
Symposium (Ottowa, Ontario, Canada) (2008).

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 91

https://doi.org/10.5281/zenodo.3672934
https://doi.org/10.1007/978-3-319-47214-0�egingroup count@ "005Felax elax uccode `~count@ uppercase {gdef {${sim }{}$}}endgroup setbox 0hbox {}dimen z@ ht z@ 24
https://doi.org/10.1007/978-3-319-47214-0�egingroup count@ "005Felax elax uccode `~count@ uppercase {gdef {${sim }{}$}}endgroup setbox 0hbox {}dimen z@ ht z@ 24
https://doi.org/10.5281/zenodo.1178476
https://doi.org/10.5281/zenodo.1178476
http://dx.doi.org/10.1007/978-3-319-67738-5_22
https://doi.org/10.5281/zenodo.3964611
https://doi.org/10.5281/zenodo.3964611
https://doi.org/10.17743/jaes.2018.0022
https://doi.org/10.1145/3446393
https://doi.org/10.1109/ACCESS.2018.2872625
https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.1145/3377881
https://doi.org/10.3389/fict.2018.00016
https://doi.org/10.3389/fict.2018.00016
https://doi.org/10.1145/3297714

VIGNATI ET AL. ENGINEERING REPORTS

[18] P. Gerum, “Xenomai-Implementing a RTOS Emu-
lation Framework on GNU/Linux,” (2004).

[19] K. Yaghmour, “Adaptive Domain Environment for
Operating Systems,” (2001).

[20] P. Gerum, “Dovetail Interface,” https://evlproject.
org/dovetail/ (accessed Aug. 11, 2021).

[21] Modul 9 Gmbh, “HiFiBerry,” https://www.
hifiberry.com/ (accessed Aug. 11, 2021).

[22] Modern Ancient Instruments Networked AB,
“SUSHI Github Repository,” https://github.com/elk-audio/
sushi (accessed Aug. 11, 2021).

[23] gRPC Authors, “gRPC: A High Performance,
Open Source Universal RPC Framework,” https://grpc.io/
(accessed Aug. 11, 2021).

[24] Modern Ancient Instruments Networked AB, “elk-
audio/twine: Thread and Worker Interface for Elk Audio
OS,” https://github.com/elk-audio/twine (accessed Aug.
11, 2021).

[25] Linux Foundation, “Advanced Linux Sound Ar-
chitecture (ALSA) Project Homepage,” https://www.
alsa-project.org/wiki/Main_Page (accessed Aug. 11, 2021).

[26] S. Letz, Y. Orlarey, and D. Fober, “Jack Audio
Server for Multi-processor Machines,” in Proceedings of
the International Computer Music Conference (Barcelona,
Spain) (2005).

[27] Modern Ancient Instruments Networked AB,
“Elk,” www.elk.audio (accessed Aug. 11, 2021).

[28] Y. Orlarey, D. Fober, and S. Letz, “FAUST: An
Efficient Functional Approach to DSP Programming,” in G.

Assayag, A. Gerzso (Eds.), New Computational Paradigms
for Computer Music, pp. 65–96 (Editions Delatour, Paris,
France, 2009).

[29] Grame-CNCM, “Faust: Functional Program-
ming Language for Real Time Signal Processing,”
https://faust.grame.fr/ (accessed Aug. 11, 2021).

[30] Mikhail, “Automatic Estimation of Signal
Round Trip Delay, Part 2b,” https://melp242.blogspot.
com/2019/01/automatic-estimation-of-signal-round.html
(accessed Aug. 11, 2021).

NOMENCLATURE

ADC = Analog-to-Digital Converter
ALSA = Advanced Linux Sound Architecture

DAC = Digital to Analog Converter
DMA = Direct Memory Access
DSP = Digital Signal Processor

GPIO = General Purpose Input/Output
gRPC = Google Remote Procedure Call

I2C = Inter-Integrated Circuit
MIDI = Musical Instruments Digital Interface
OSC = Open Sound Control

RASPA = RTDM Audio-over-SPi API
RTDM = Real-Time Driver Model

RTL = Round-Trip Latency
SoC = System-on-Chip

TWINE = Thread and Worker INterface for Elk Audio OS
UART= Universal Asynchronous Receiver/Transmitter
UDP = User Datagram Protocol

92 J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February

https://evlproject.org/dovetail/
https://evlproject.org/dovetail/
https://www.hifiberry.com/
https://www.hifiberry.com/
https://github.com/elk-audio/sushi
https://github.com/elk-audio/sushi
https://grpc.io/
https://grpc.io/
https://github.com/elk-audio/twine
https://www.alsa-project.org/wiki/Main_Page
https://www.alsa-project.org/wiki/Main_Page
file:www.elk.audio
https://faust.grame.fr/
https://melp242.blogspot.com/2019/01/automatic-estimation-of-signal-round.html
https://melp242.blogspot.com/2019/01/automatic-estimation-of-signal-round.html

ENGINEERING REPORTS COMPARISON OF REAL-TIME LINUX-BASED ARCHITECTURES

THE AUTHORS

Luca Vignati Stefano Zambon Luca Turchet

Luca Vignati is a Ph.D. candidate at the Department of
Information Engineering and Computer Science of Uni-
versity of Trento. He studied Computer and Electronic
Engineering (B.Sc.) at the University of Pavia, Italy, and
Computer Science and Engineering (M.Sc.) at Politec-
nico di Milano, Italy. He carried out his master thesis at
Elk porting Elk Audio OS to a previously unsupported
SoC. He has been awarded a post thesis scholarship from
the University of Trento and a research scholarship from
Fondazione C.M. Lerici.

•
Stefano Zambon is a cofounder and Chief Technical Of-

ficer of Elk. He holds a master’s degree (summa cum laude)
and a Ph.D. in Computer Science from Verona University.
His experience combines academic-level expertise in signal
processing with 11 years of industry experience working
with large codebases, always for audio and musical appli-
cations.

•

Luca Turchet is an Assistant Professor at the De-
partment of Information Engineering and Computer Sci-
ence of University of Trento. He received master degrees
(summa cum laude) in Computer Science from University
of Verona, in classical guitar and composition from Mu-
sic Conservatory of Verona, and in electronic music from
the Royal College of Music of Stockholm. He received
a Ph.D. in Media Technology from Aalborg University
Copenhagen. His scientific, artistic, and entrepreneurial re-
search has been supported by numerous grants from dif-
ferent funding agencies including the European Commis-
sion, the European Institute of Innovation and Technol-
ogy, the European Space Agency, the Italian Minister of
Foreign Affairs, and the Danish Research Council. He is
cofounder of Elk, and is Associate Editor of IEEE Ac-
cess and the Journal of the Audio Engineering Society. His
main research interests are in music technology, Internet
of Things, human–computer interaction, and multimodal
perception.

J. Audio Eng. Soc., Vol. 70, No. 1/2, 2022 January/February 93

