
Towards Real-Time Detection of Symbolic Musical
Patterns: Probabilistic vs. Deterministic Methods

Nishal Silva
Independent researcher

Colombo, Sri Lanka

nishals@ieee.org

Carlo Fischione
KTH Royal Institute of Technology

Stockholm, Sweden

carlofi@kth.se

Luca Turchet
University of Trento

Trento, Italy

luca.turchet@unitn.it

Abstract—The computational detection of musical patterns is
widely studied in the field of Music Information Retrieval and has
numerous applications. However, pattern detection in real-time
has not yet received adequate attention. The real-time detection
is important in several application domains, especially in the field
of the Internet of Musical Things. This study considers a single
musical instrument and investigates the detection in real-time of
patterns of a monophonic music stream. We present a repre-
sentation mechanism to denote musical notes as a single column
matrix, whose content corresponds to three key attributes of each
musical note - pitch, amplitude and duration. The note attributes
are obtained from a symbolic MIDI representation. Based on
such representation, we compare the most prominent candidate
methods based on neural networks and one deterministic method.
Numerical results show the accuracy of each method, and allow
us to characterize the trade-offs among those methods.

I. INTRODUCTION

Music is a systematic organization of musical notes of vary-
ing duration and intervals of silence. The presence of repetitive
patterns is one of the most significant aspects of music. For
instance, considering monophonic signals, a musical pattern
can be defined as an ordered sequence of notes and pauses.
Research has shown that human listeners usually associate a
piece of music with its underlying patterns [1], [2].

The computational detection of repetitive patterns in music
has been widely studied in the field of Music Information
Retrieval [3]. There are numerous applications of musical
pattern detection, including computational musicology, beat
tracking, audio fingerprinting, or audio mixing. Most of exist-
ing studies have focused, however, on offline contexts, i.e., by
analizing recordings, whereas little attention has been devoted
to the real-time scenario, i.e., when the analysis needs to be
performed at the moment in which the musical pattern is
generated by a musical instrument.

Real-time pattern detection from the output of a musical
instrument is an essential aspect in those Internet of Musical
Things (IoMusT) applications [4] based on smart musical
instruments [5]. In this family of musical instruments, the
embedded intelligence can be exploited to extract, in real-
time, patterns from the player’s output and repurpose them into
controls for connected devices. These devices include smoke
machines, stage lights, visuals or the audio-visual output of
smartphones of audience members in participatory live music
contexts. For instance, a smart cajón player [6] during a live
concert could play a pre-determined rhythmic pattern and in
response to it a control could be automatically triggered to

modify the color of stage lights. To date, scarce research has
been conducted to address this kind of scenarios envisioned in
IoMusT research [4].

In this paper, we develop and evaluate the most prominent
methods to detect, in real-time, patterns in monophonic mu-
sical signals related to a single instrument. In particular, we
compare the performance and complexity of both probabilistic
and deterministic systems. Our study assumes that a smart
musical instrument converts the incoming audio signal into
MIDI notes (as performed, for instance, by the smart cajón
reported in [6]). Therefore, we have not considered the actual
audio signal in the form of digitized audio waves, but its
symbolic representation in the MIDI format. In more detail,
we aim at detecting, with minimum latency, a set of pre-
determined patterns as soon as they appear in a running
monophonic MIDI sequence, exactly how it would happen in
a real live music context. With this study we aim to contribute
to the development of technological solutions that enable the
creation of IoMusT applications by pre-programming smart
musical instruments with patterns chosen by the musician,
producer or composer.

The remainder of this paper is organized as follows: Section
II introduces several other existing studies that have been
conducted on the identification of musical patterns. Section
III elaborates on the musical notation format introduced in
this study, while Section IV explains our definition of musical
patterns and their tolerances. Sections V and VI provide de-
tailed explanations on the methods that we have used. Section
VII provides an overview of the datset and the results. Section
VIII presents the results of the study, and discusses possible
extensions and section IX Presents our conclusions.

II. RELATED WORKS

The detection of patterns in a recorded musical signal has
been widely studied and several implementations are available.
Although most of the existing studies aim to detect patterns in
recorded music, some methods could potentially be modified
to work in real-time. This section overviews the most relevant
literature on the topic of pattern detection in music.

It is possible to categorize these methods into different
categories based on the representation of the audio stream.
Some of such categories that we have analyzed in this section
are:

• String based analysis methods

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

• Tree based analysis methods

• Spectrum based analysis methods

• Correlative matrix analysis based methods

• Geometrical analysis methods

String based analysis methods represent the audio stream
in the form of a string. The work in [7] presents a technique
to extract patterns from a given melodic line. This method
is iterative and not intended for a real-time application. An
iterative program scans the beginnings and the ends of patterns.
Discovered patterns are deemed significant by analyzing their
length and frequency of occurrence, and non overlapping,
immediately repeating patterns are considered special cases.

The study in [8] proposes a method to identify specific
character sequences from larger texts and explores several deep
learning methods. The authors present algorithms based on
convolutional networks, recurrent networks and a hybrid both.
The predictions for several text patterns are evaluated. The
study concludes that deep learning methods are able to achieve
a high accuracy precision in sequence pattern recognition.

A method to classify musical patterns extracted from raw
audio is presented in [9]. The study presents an algorithm
for pattern extraction and their conversion to sequences of
musical intervals, which are input to a set of variable-duration
Hidden Markov Models (HMM). Each HMM has been trained
to detect patterns belonging to its corresponding class. This
classification method has been used in the context of Greek
traditional music, specifically on monophonic musical patterns
generated by the Greek traditional clarinet. The authors of [9]
report difficulties of Greek traditional music when compared
to other Western music, which makes pattern recognition
more difficult. The research showed the improvements of the
proposed method over methods based on conventional HMMs.

A similarity measure for multivariate time series datasets,
which are common in various multimedia, medical and fi-
nancial applications, is presented in [10]. This method is
based on Principal Component Analysis. Although intended
to measure similarity between time series, this method has
the possibility to be adapted for pattern detection through the
use of a windowing function. The author used the principal
components and eigenvalues to compare the similarity between
multivariate time series matrices. The results obtained by
using several datasets showed that the method performed
better compared with traditional approaches (such as Euclidean
Distance, Dynamic Time Warping, Weighted Sum SVD and
PCA similarity factor).

Tree based analysis methods represent the audio stream as
a tree structure and use properties of this structure to identify
patterns. The authors of [2] present such a method, which
aims to use the repeating patterns to speed up music retrieval,
based on the fact that repeating patterns are key melodies and
are easier to familiarize with people. The involved algorithm
use the musical signal to construct a suffix tree, leveraging
algorithms presented in [11]. The authors identify repeating
patterns by scanning the nodes of the constructed tree.

Some methods use a spectral representation of the audio to
identify patterns. The work in [12] aims to find repeating pat-
terns in music to perform the task of separating the repeating

background from the non-repeating foreground in a musical
mixture. The authors propose an algorithm able to identify
periodically repeating segments in the audio through an auto-
correlation of the Short Time Fourier Transform spectrum and
the power spectrum. The authors presents the results on data
sets of 1000 song clips and 14 full-track real-world songs. The
algorithm is also proposed to be used as a preprocessing stage
for pitch detection algorithms, to improve melody extraction.

The authors of [13] introduces a data structure called the
“correlative matrix”, which is used by several subsequencet
studies as well. The correlative matrix is used to store the
information extracted from the music. The correlative matrix
is then utilized to determine repeating patterns and their
locations. The authors of the study described in [14] present a
modified version of the correlative matrix introduced in [13]
to increases the efficiency of the algorithm.

Some methods use the geometrical nature of music as a ba-
sis for its representation. The authors of [15] present a method
to identify repeated patterns in music by representing the
music as a multidimensional dataset, of which two dimensions
are plotted. These scatter plots are utilized to find repeating
patterns present in music. The work reported in [16] presents
a method to extract repeating drum loops from polyphonic
music. The spectrogram is used to cluster the onset signal
into known drum types, which are used to determine repeating
patterns. In a different vein, the mechanisms behind the popular
music identification program Shazam [17] is presented in
[18]. This study elaborates on the creation of fingerprinting
hashes, which are then used to match an audio segment with
a database.

Another geometrical analysis method representing the mu-
sical melodies as curves is presented in [19]. The minimum
area between the curves is utilized to measure the degree of
match. This method can account for pitch and time variations
in similar curves. The authors of [20] also present a similar
geometrical approach, where each note is represented as a
horizontal line segment in a time vs. pitch plane. These line
segments are translated in the plane to find matches. Such a
work further categorizes the matched patterns based on the
pitch change.

Notably, the majority of the studies overviewed above are
not directly targeting the real-time domain.

III. REPRESENTATION OF MUSICAL NOTES

In this study, we propose to use a mechanism to represent
musical notes using three of their primary attributes. Each note
is represented as a column matrix with three elements, each
of which corresponds to the following note attributes:

• Pitch: the perceived height of the musical note, which
is related to the actual frequency of it;

• Note duration: the time interval between the note onset
and its end;

• Amplitude: the highest peak of the note through its
duration.

A sample representation of a musical note can be presented as
follows:

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 239 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

Ci =

[
Pi

Ai

Di

]
. (1)

In the above sample note Ci, the pitch is denoted by Pi,
the amplitude is denoted by Ai, and the note duration is
denoted by Di. Similarly, a sequence of musical notes S can
be represented as follows:

S =

[
Pi

Ai

Di

]
,

[
Pi+1

Ai+1

Di+1

]
,

[
Pi+2

Ai+2

Di+2

]
, . . .

Pitch. The pitch of a note depends primarily on frequency
at which the sound wave associated with it resonates, and
on loudness and spectrum. Classical music and most Western
music has defined the standard pitch which is based on the 12
tone equal temperament (12-TET) tuning system. This tuning
system divides an octave into 12 equal parts, which are then
mapped to the 12 notes in Western music [21]. The standard
12-TET tuning system defines the A4 note (the A note above
middle C in a standard piano) - as 440Hz. In this study, we
use the standard 12-TET pitch, which is converted to MIDI
notes for simpler visualization.

We use the MIDI notation to represent the pitch. The MIDI
numbers are defined based on the MIDI keyboard, which has
128 keys. Each note is mapped to an integer to represent its
frequency. The MIDI notes span from 0 (C−1 ≈ 8.18Hz),
to 127 (G9 = 12.5kHz). The MIDI note number for A4 =
440Hz is 69.

Amplitude. The amplitude is a measurement of the loud-
ness of the musical note. A key characteristic of a musical
sequence is the relative loudness and softness between notes
or phrases of music. In Western music, the variation between
the relative loudness is defined as Dynamics. There are two
basic dynamic indicators in written music which are denoted
by p (piano) - meaning soft, and f (forte) - meaning loud or
hard. It is common for the usage of up to three p’s of f’s to
covey varying degrees of loudness. Some of the most common
dynamic markers are [22]:

• ppp - pianissimissimo, meaning very very soft.

• pp - pianissimo, meaning very soft

• p - piano, meaning soft

• mp - mezzo-piano, meaning moderately soft

• mf - mezzo-forte, meaning moderately loud

• f - forte, meaning loud

• ff - fortissimo, meaning very loud

• fff - fortissimissimo, meaning very very loud

The amplitude is obtained using the velocity, which is
defined by the MIDI standard. This measurement, like for the
pitch, is also represented by an integer in the range of 0-127.
The popular production software Logic Pro X maps the MIDI
velocity to musical dynamics markers as shown in Table I [23].

Duration. The duration of the musical note can be defined
as the time interval between a note onset and the end of its

TABLE I. MIDI VELOCITY AND DYNAMICS MAPPING IN LOGIC PRO X
(RETRIEVED FROM [23]).

Dynamics notation ppp pp p mp mf f ff fff

MIDI Velocity 16 32 48 64 80 96 112 127

decay. This attribute refers to the length of a musical note.
Written Western music uses a system of notes, time signatures
and tempo to define the length of a note. For an example, let
us consider a musical notation of the first four notes of the C
major scale where the tempo is defined as ˇ “ = 120. Western
music notes are constructed to fit within the time signature
defined. We will not discuss this in detail as it is a vast study
outside the scope of this research.

G 4
4 ˘ ˇ (ˇ (ˇ

A ˘ “ represents a value of 1/2, a ˇ “ represents a note value
of 1/4, and a ˇ “(represents a value of 1/8 within the 4/4
time signature. The tempo is defined above as ˇ “ = 120 BPM
(beats per minute), meaning 120 repetitions of a ˇ “ can occur
within a span of 60 seconds (1 minute). We can then deduce
that a ˘ “ will have a duration of 1 second, a ˇ “ o will have
a duration of 0.5 seconds, and a ˇ “(will have the duration of
0.25 seconds.

S= G 4
4 ˇ ˇ ˇ ˇ

The four notes presented above are the first four notes of
the C major scale starting with middle C. Earlier subsections
elaborate on the MIDI note values, which in this case are,
C4 = 60, D4 = 62, E4 = 64, and F4 = 65. Let us assume that
the tempo is ˇ “ = 120 BPM, and that the amplitude is a constant,
medium loud value (mf ≈ 80). The earlier explanation shows
us that the duration of a ˇ “ is 0.5s for a tempo of 120 BPM.

Using the representation we have introduced above (see
equation 1), we can denote these four notes as follows:

S =

[
60
80
0.5

]
,

[
62
80
0.5

]
,

[
64
80
0.5

]
,

[
65
80
0.5

]
. (2)

The MIDI Standard defines a note on, and note off value
for each musical note. The note on is used to denote the
starting value of each note and any pauses that may be present
before the note. The note off value denotes the end of each
note, and we use a manipulation of these values to denote
the note duration and pauses. A pause is denoted by a note
with 0 amplitude and 0 pitch. Below is a musical notation of
sequence S̃, which was obtained by introducing a 0.5s pause
to S, immediately after its first note.

S̃= G 4
4 ˇ > ˇ ˇ ˇ

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 240 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

Equation 3 shows S̃, presented in the representation stan-
dard we have defined in equation 1. It should be noted that
MIDI note number 0 is used to denote the C−1 note, as
described earlier. The note C0 = 16.35Hz is typically cited as
being just below the lower limit of human hearing [24], [25],
[26]. As C−1, is an octave below C0, it is well outside the
frequency range of most, if not all, commonly used musical
instruments. Therefore, for our application, we can safely
rule out the chances of a C−1 note occurring, and use its
representation as a pause instead.

S̃ =

[
60
80
0.5

]
,

[
0
0
0.5

]
,

[
62
80
0.5

]
,

[
64
80
0.5

]
,

[
65
80
0.5

]
. (3)

IV. PATTERNS AND TOLERANCES

Our study is primarily geared towards live music appli-
cations and, therefore, we need to take the human tolerances
into account (in terms of playing). It is unlikely that a musical
performance will go on exactly at the notated tempo and,
hence, the duration of notes may slightly vary. The dynamics
might also vary depending on the performer, his interpretation
or his interactions with the audience. For instance, the musician
might play a solo section with different dynamics to better
engage with his audience. In such a case, the system needs be
aware of any allowable tolerances with respect to a pattern.
We have defined tolerances for each of the note attributes as
follows:

• Pitch - The tolerance for pitch is 0. This is due
to the fact that any change in a MIDI note’s pitch
may completely transform the pattern. As Western
music works under the principle of the 12-TET tuning
system, any change in pitch by the lowest possible
interval (semitone), will change the musical note.

• Amplitude - We set the tolerance for amplitude to
approximately 6% − 8%. This value corresponds to
8-10 units of deviation of the MIDI velocity, and is
consistent with approximately 50% of the distance
between music dynamics markers [23].

• Duration - It is not unlikely that the tempo may
vary from what is stated due to human errors and
various other uncontrollable factors, but too much of
a variation will obstruct in experiencing the music as
it was meant to be. It is rather unlikely that a piece
of music meant to be played at a certain tempo (e.g.,
ˇ “ = 120 BPM), will be played at a drastically different
tempo (e.g., ˇ “ = 220 BPM). With this understanding,
we defined the tolerance for note duration as 5% of
the tempo. This approach is sensible in the way that
most music might become technically demanding at
higher tempi, and the susceptibility to errors may be
higher. In such a case, the tolerance becomes more
lenient than at lower tempi.

Another characteristic of the 12-TET tuning system is the
presence of octaves. For the purposes of this study, we consider
that any identical sequences of notes, at different octaves, are
different from each other. Refer to the musical notation below:

G 4
4 ˇ ˇ ˇ ˇ

G 4
4

ˇ ˇ ˇ ˇ

G 4
4

ˇ ˇ ˇ ˇ

All three staves above show the identical sequence in all
aspects except for their octave. In this study, we will consider
these three sequences as three different patterns. This approach
is made possible by the MIDI note number mapping.

V. OVERVIEW OF PROPOSED METHODS

In this study, we explore various methods to detect patterns.
These methods can be categorized into two broad categories
as Probabilistic and Deterministic approaches. As discussed
in the previous section, one of the fundamental challenges of
this study is the error tolerances and the octave-variant pattern
representation. The task is indeed a classification task, but
establishing the boundaries between classes proved difficult
as the sequence of notes can be spread throughout the space,
and various notes can be a part of a sequence with a defined
order of occurrence.

Let us consider the sequence given by Eq. 2, which has
four notes of various pitch. If we now consider the first note
of sequence S, along with the tolerances that we have defined
above, the note can lie in the following ranges:

S0 =

[
P0 = 60

70 ≤ A0 ≤ 80
0.475 ≤ D0 ≤ 0.525

]
.

A clearer understanding could be obtained if the note was
viewed in a 3-dimensional space with each attribute being an
axis (refer to Fig. 1). Here the x-axis represents the pitch, the
y-axis represents the amplitude and the z-axis represents the
duration. Fig. 1 shows a single note, with exact values, which
can be plotted as a single dot. If we assign the tolerance values
for the note, there will be a range of values that may deem the
note as acceptable for recognition. Fig. 2 shows such a case.
Ŝ0 denotes the note S0 and the specified tolerances. As we
have defined a zero tolerance for the pitch, we can visualize
the range of values belonging to Ŝ0 as a rectangle centered
around S.

Further to this, let us consider the sequence Ŝ, which
denotes S and its tolerances in a 3-dimensional space. Fig. 3
shows the set of values belonging to all 4 notes of S, within
their tolerances. We can clearly see the difficulty in estab-
lishing inter class boundaries when trying to classify multiple
sequences.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 241 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A single note S0
represented as a point in a 3-dimensional space

Fig.

2.

A

single

note

Sˆ0,

with

its

tolerances

represented

in

a

3-dimensional

 space

Fig.

3.

The

sequence

Sˆ,

with

its

tolerances,

represented

in

a

3-dimensional

space

Fig. 4. Example of boundaries of three patterns

Fig. 5. An illustration of three individual neural networks, each designed to
detect a single pattern (top), and a single neural network designed to detect
all three patterns (bottom).

A. Deterministic Approach

We present a deterministic boundary checking system to
detect patterns. This method represents a set of cascading
conditional statements where each state acts as a memory. We
can illustrate this method by Fig. 4, where the universal set
denotes all the possible sequences of notes that can happen.
If the sequence lies between the boundaries corresponding to
Pat A, the system will return as such. If the sequence does not
belong to any pattern set, the system will return a 0.

We are presenting a simple, boundary checking algorithm,
which allows each note in the sequence to lie within specified
tolerances. A detailed description of the algorithm is presented
in the Section VI-A.

B. Probabilistic Approaches

We present six probabilistic methods of pattern identifi-
cation. These methods will return the probability of a match
against each pattern class. We have explored four methods
based on artificial neural networks (ANN), a method based on
convolutional neural networks (CNN), and a method based on
recurrent neural networks (RNN). The ANN-based methods
consist of a single neural network-based configuration and a
multiple neural network-based configuration (see Fig. 5). Both
configurations have two variants: a variant with a single hidden
layer, and one with eight hidden layers.

The top section of Fig. 5 shows an overview of a multiple
neural network based method. There are three neural networks,

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 242 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

each trained to detect a single pattern. In Fig. 5 top section,
NNA has been trained to detect a 4-note pattern. Similarly,
NNB and NNC have been designed to detect patterns of
lengths 3 and 2, respectively. The output of each neural
network is binary, denoting a match to its corresponding
pattern or not, and each neural network will take an input
of a different length. The bottom section of the figure shows
a single neural network-based approach. The input size is
constant and shorter patterns will have to be padded and length
equalized. The output of the single neural network denotes the
probability of the input sequence match with each pattern.

VI. METHODOLOGY

This section presents the algorithms and detailed descrip-
tions of each of the methods we have explored in this study.

A. Deterministic System

For ease of explanation, let us consider a sample pattern
PT = pt1, pt2, pt3, pt4. Let the incoming sequence be Si =
s0, s1, s2, ..., sm, where m is the length of the stream (which
is currently unknown). The amplitude and duration tolerances
are defined as ΔA and ΔD. Note that the ith note of the input
sequence and of the pattern is expressed respectively as si and
pi for ease of representation.

In reality, each note si and pti will denote all attributes as
illustrated in Eq. 1, where Psi and Ppti denote the pitch of si
and pti, Asi and Apti denote the amplitude of si and pti, and
Dsi and Dpti denote the duration of si and pti respectively,
as shown below.

si =

[
Psi
Asi
Dsi

]
, pi =

[
Ppti
Apti
Dpti

]

Algorithm 1 Deterministic System

1: For every incoming note Si

2: Check if si = pt1. For this condition to suffice, all
attributes of si should be within the tolerances of pi in
such a way that

• Psi = Ppt1• (Apt1 −ΔA) ≤ Asi ≤ (Apt1 +ΔA)
• (Dpt1 −ΔD) ≤ Dsi ≤ (Dpt1 +ΔD)

3: If si = pt1, check if si+1 = pt2, if not, increment i and
go back to previous step;

4: If si+1 = pt2, check if si+1 = pt2;
5: If si+2 = pt3, check if si+3 = pt4;
6: The pattern PT is found if:

• si = pt1 and
• si+1 = pt2 and
• si+1 = pt2 and
• si+3 = pt4

B. Single Neural Network

As explained earlier, this approach utilizes a single neural
network trained to identify all within-tolerance variations of
given patterns. One of the biggest constraints in such an

approach is the fixed size of the input layer, and that patterns
will not always have the identical length.

We overcome this limitation by padding the shorter patterns
to obtain a list of patterns that have equal lengths. In our
simulations, we constructed a padding note pd with values
outside the sample space for all note attributes. The padding
note is:

pd =

[
999
999
999

]

The shorter patterns are padded with pd to create a set of
patterns with the same length. These are then used to create
the training dataset.

Algorithm 2 Single neural network, training dataset creation

Inputs: List of patterns, Labels
1: Identify the longest pattern
2: Pad the shorter patterns with pd to equalize length.
3: Replace all padded notes with random notes that allow

the best representation of the sample space. Label with
the relevant pattern label.

4: Create within-tolerance variations for all patterns. For each
pattern note pti, the newly created pattern variation note
vi should fall within the tolerances:

• Pvi
= Ppt1• (Apti −ΔA) ≤ Avi ≤ (Apti +ΔA)

• (Dpti −ΔD) ≤ Dvi
≤ (Dpti +ΔD)

5: Create amplitude variations of all patterns.
6: Create negative patterns that lie outside the tolerances of

the given patterns.

Once the training dataset is created, we create and train the
neural network. The patterns are flattened to obtain a single
row vector to be input to the neural network. The input layer
will have the same length as the flattened longest pattern, and
the output layer will have a number of nodes equal to the
number of patterns + 1, to account for negative patterns.

The system will save each incoming note in memory until a
sub-sequence of required length is obtained. This sub-sequence
is used to obtain a pattern prediction. Upon the arrival of
each new note, the sub-sequence will discard its first note, and
append the new note at its end. This operation is equivalent to
the application of a sliding window on a discrete time series,
where the window is shifted by 1 at each time increment.
The real-time operation of the single neural network-based
algorithm is highlighted in Algorithm 3.

Algorithm 3 Single neural network, operation

Input: Music sequence Si = s0, s1, S2, ..., sm.
1: Store each incoming note in memory, until a sub sequence

of the required length in obtained;
2: Reshape the sub sequence to obtain a single row;
3: Obtain the pattern prediction through the trained neural

network;
4: Output the prediction.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 243 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

C. Multiple Neural Networks in parallel

As explained in the above section, we train a single neural
network per pattern. Such as approach is made possible due to
the limited number of patterns. In this method, for n patterns,
there will be n neural networks and n training datasets. Each
neural network will have a binary output as it only needs to
predict if the pattern is a match or not. Algorithms 4 and 5
explain the training dataset creation and the operation of this
method.

Algorithm 4 Multiple neural networks, training dataset cre-
ation
Inputs: List of patterns, Labels

1: Create within-tolerance variants for each pattern, as elab-
orated in algorithm 2, and label them as positive;

2: Create amplitude variations for each positive patterns,
label them as positive;

3: Create negative patterns that lie outside the tolerances of
the given patterns, and label them as such;

4: Repeat for each pattern.

Algorithm 5 Multiple neural networks, operation

Input: Music sequence Si = s0, s1, s2, ..., sm.
1: Construct sub sequences ssi(i=1,2,..,n) of lengths

[lpt1 , lpt2 , ..., lptn], where lpti denotes the length of
pattern pti, and n denotes the number of patterns;

2: Pass each sub sequence ssi to Neural Networks MNNi,
where lssi is equal to the MNNi’s input layer length;

3: Reshape the sub sequence to obtain a single row;
4: Obtain the pattern prediction through the trained neural

networks;
5: Output the prediction.

D. Convolutional and Recurrent Neural Networks

The training dataset creation for these methods are similar
to those explained in algorithms 2 and 4. The operating
procedure is very similar too. Sub-sequences extracted from
the audio data stream is passed to each neural network.

Fig. 6 illustrates the operation of the two neural network
based methods. The top section shows a multiple neural
network based method with 3 networks each with an input
size of 4, 3, and 2. The numbered line represents the incoming
musical notes at each time increment. It can be clearly seen
that the first 4 note sub-sequence of the audio stream is passed
to NNA, the first 3 note sub-sequence is passed to NNB , and
the first 2 note sub-sequence is passed to NNC . Each network
will output 1 if the input sub-sequence is a match to the pattern
it was trained to detect, or 0 if otherwise.

The bottom section of figure 6 Shows the operation of a
single neural network trained with an input layer size of 4
notes. Each consecutive 4 note long sub-sequence is extracted
and input to the NND, which outputs the probability of
matching with each pattern it was trained with.

VII. DATASET AND RESULTS

To observe the performance of the proposed methods, we
used several fabricated data streams, and MIDI transcriptions

Fig. 6. The two neural network configurations, and an illustration of the
sub-sequences extracted through the incoming data stream (represented by
the numbered line).

of numerous popular songs and musical pieces. As this study
deals with monophonic input sources, the data was chosen
carefully to ensure that they are monophonic. The data and
patterns are available online at [27]. The data and manually
extracted patterns we used to train and evaluate the systems
are as follows:

1) Artificially created data stream 1: 10 different
patterns of various lengths were created manually.
The patterns have lengths ranging from 4 to 10 notes.
The data stream was created by placing each pattern
consecutively. Each pattern is present once in the
stream.

2) Artificially created data stream 2: 6 different pat-
terns of varying lengths were created manually. Each
pattern length is 5 notes. Some patterns have the same
notes, but with a different ordering. A stream of 100
random notes were created, and the the generated pat-
terns were placed at random locations. Some patterns
are present multiple times in the stream.

3) Flight of the bumblebee by Nikolai Rimsky-
Korsakov: 3 repeating sequences were chosen from
the solo instrument track. Each sequence is 8 notes
in length and repeats twice in the track.

4) The solo guitar track from Scarified by Racer
X: Three patterns were manually extracted from the
main melody. One pattern repeats 14 times through-
out the song and has a length of 15 notes. Both
other patterns are 16 notes in length, and repeat 3
times each. The solo track was obtained using the
free resource [28].

5) Canon in D by Johann Pachelbel: The main melody
was transcribed to MIDI. A 14 note segment was
selected as a pattern. This segment occurs twice
within the track.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 244 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

6) Frère Jacques: A monophonic MIDI track of this
French folk song was created and 2 short patterns
were chosen. The patterns are 3 and 4 notes in length,
and each pattern repeats twice.

To illustrate a sample pattern from a dataset, P1 is one
of the patterns used in Artificially created data stream 1.
The musical notation as well as the column matrix based
representation of P1 is shown below:

P1= G 4
4 ˇ (ˇ (ˇ @ (ˇ

P1 =

[
60
127
0.5

]
,

[
62
60
0.25

]
,

[
64
60
0.25

]
,

[
0
0

0.25

]
,

[
65
60
0.5

]
.

The following methods were used for evaluation (all neu-
ral networks were designed using Python 3.7.3, TensorFlow
1.15.2, and Keras 2.3.1):

1) Det: Deterministic system;
2) SNN-I: Single network with a single hidden layer;
3) MNN-I:Multiple neural networks with a single hid-

den layer;
4) SNN-II: Single neural network with multiple hidden

layers;
5) MNN-II: Multiple neural networks with multiple

hidden layers;
6) CNN: Convolutional neural network;
7) RNN: Recurrent neural network.

The input layer length of SNN-I and SNN-II is equal to the
pattern length. The output layer length is equal to the number
of patterns + 1. Each neural network belonging to MNN-I
and MNN-II has an input layer length corresponding to its
pattern and an output layer length of 2. All input layers have a
ReLU activation function and all output layers have a softmax
activation function.

SNN-I and each neural network in MNN-I has one hidden
layer, and uses a ReLU activation function. SNN-II and each
neural network in MNN-II has 8 hidden layers and they too,
use the ReLU activation function. All models used the Adam
optimization algorithm.

CNN has one colvolutional layer with a ReLU activation
function, immediately followed by a max pooling layer, and a
flatten layer. CNN then employs a dense layer with a ReLU
activation function, a dropout layer, and a dense output layer
with a softmax activation function. The optimizer used by CNN
is Adadelta.

RNN is equipped with two LSTM layer, a dense layer with
a ReLU activation function, a dropout layer, and a dense output
layer with a softmax activation function. The optimizer used
by RNN is Adam.

Training datasets for each track were created using the
chosen patterns as explained in algorithms 2 and 4. All meth-
ods were evaluated by mimicking a real-time music stream
through the use of sliding windows, and each configuration
was evaluated on the fly. All simulations were conducted on
a workstation laptop with an Intel core i7 (2.8GHz) processor

TABLE II. CONFIGURATIONS AND AVERAGE RUNNING TIMES FOR

EACH INVESTIGATED METHOD.

Configuration Running time (ms)
Det 2.1
SNN-I 18.5
MNN-I 35.2
SNN-II 15.8
MNN-II 38.6
CNN 19.5
RNN 24.8

TABLE III. CORRECT AND FALSE IDENTIFICATION PERCENTAGES FOR

EACH INVESTIGATED METHOD.

Configuration Correctly identified Falsely identified
Det 100% 0%
SNN-I 90% 29%
MNN-I 92% 32%
SNN-II 96% 27%
MNN-II 97% 25%
CNN 98% 21%
RNN 99% 23%

with 16GB of memory. Table II shows average running times
for each method.

The running times presented in table II relate to the time
taken by each configuration to evaluate a single sub-sequence
and was obtained by averaging the processing time per sub-
sequence in each configuration. These values are presented in
micro-seconds, and they prove that all methods are suitable for
real-time applications.

Table III shows the results of the evaluations. The column
correctly identified shows the number of sub-sequences where
the system identified a pattern correctly, as a percentage of
the total number of pattern containing sub-sequences. The
falsely identified column shows the number of non-pattern
containing sub-sequences the system registered as a pattern,
as a percentage of the total number of sub sequences where
no pattern is present.

VIII. DISCUSSION

The results of the experiments show that, while all config-
urations have high rates of detection, the probabilistic models
tend to have some false positives. The boundary checking sys-
tem seems to have the best performance due to its deterministic
nature. However, if we take into account a real-world scenario,
there is a chance that a musician might play a required pattern
slightly outside the specified tolerance values. And in such
a case, the deterministic system will recognize it as a non-
pattern. One could say that due to the deterministic nature
of this method, it may become too artificial and strict. We
cannot expect a musician performing their instrument to play
an exact copy of the musical piece each and every time. The
subtle nuances and idiosyncrasies is the very thing that makes
music so enjoyable. Along that thought, one could argue that
machine learning methods may form hidden neural pathways
that are potentially able to capture these nuances. Therefore,
probabilistic methods may work better than strict rule-bound
deterministic systems and overcome the case mentioned above.
However, future research is needed to further reduce the rate

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 245 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

of false positives, and subsequently prepare such a system for
live real-time use.

Various opportunities exist to extend the results of our
research. A possible extension of this paper concerns the
combination of two or more of the discussed methods. As
explained in earlier sections, it is extremely difficult to con-
struct class boundaries due to the nature of the pattern note
positions. This is another prospective extension of this work.
Notably, the present study was conducted considering exclu-
sively monophonic music signals. The possible application
of the methods presented here on polyphonic single track
music, monophonic multi track music, and polyphonic multi
track music would also render this study much more useful
to real world applications. Furthermore, this work applied the
proposed methods on a mobile workstation computer, whereas
smart musical instruments rely on embedded systems. In future
work we plan to investigate how to manage the computational
complexity and make it possible to put the methods developed
for musical pattern recognition into actual smart instruments,
as well as to devise novel IoMusT applications based on them.

IX. CONCLUSIONS

In this paper we investigated musical patterns detection in
real-time, a topic that has not yet received adequate attention in
the field of Music Information Retrieval, and which is relevant
to several IoMusT applications. Specifically, we considered the
case of a monophonic streams of MIDI notes as produced
in real-time by a smart musical instrument. For this purpose,
we presented a representation mechanism to denote musical
notes as a single column matrix, whose contents correspond to
three key attributes of each musical note - pitch, amplitude and
duration. Based on such representation, we compared the most
prominent candidate methods based on neural networks and
one deterministic method. Numerical results show the accuracy
of each method, and allow us to characterize the trade-offs
among those methods.

We believe that this study is among the first in the area of
real-time musical pattern detection for IoMusT applications,
and several developments are needed to address the numerous
research directions and potentialities.

REFERENCES

[1] E. Margulis, “Musical repetition detection across multiple exposures,”
Music Perception: An Interdisciplinary Journal, vol. 29, pp. 377–385,
2012.

[2] Y. Lo and W. Li, “Linear time for discovering non-trivial repeating
patterns in music databases,” in 2004 IEEE International Conference
on Multimedia and Expo, 2004, pp. 293–296.

[3] J. Burgoyne, I. Fujinaga, and J. Stephen Downie, Music Information
Retrieval. Wiley-Blackwell, Nov 2015, pp. 213–228.

[4] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet, “Internet
of Musical Things: Vision and Challenges,” IEEE Access, vol. 6,
pp. 61 994–62 017, 2018. [Online]. Available: https://doi.org/10.1109/
ACCESS.2018.2872625

[5] L. Turchet, “Smart Musical Instruments: vision, design principles, and
future directions,” IEEE Access, vol. 7, pp. 8944–8963, 2019. [Online].
Available: https://doi.org/10.1109/ACCESS.2018.2876891

[6] L. Turchet, A. McPherson, and M. Barthet, “Real-time hit classification

in a Smart Cajón,” Frontiers in ICT, vol. 5, no. 16, 2018. [Online].
Available: https://doi.org/10.3389/fict.2018.00016

[7] E. Cambouropoulos, “Musical parallelism and melodic segmentation,”
Music Perception, vol. 23, pp. 249–268, 2006.

[8] X. Gao, J. Zhang, and Z. Wei, “Deep learning for sequence pattern
recognition,” in IEEE 15th International Conference on Networking,
Sensing and Control, 03 2018, pp. 1–6.

[9] A. Pikrakis, S. Theodoridis, and D. Kamarotos, “Classification of
musical patterns using variable duration hidden markov models,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 14,
no. 5, pp. 1795–1807, 2006.

[10] K. Yang and C. Shahabi, “A pca-based similarity measure for multivari-
ate time series,” in Proceedings of the 2nd ACM International Workshop
on Multimedia Databases, 01 2004, pp. 65–74.

[11] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica,
vol. 14, p. 11, 01 1995.

[12] Z. Rafii and B. Pardo, “Repeating pattern extraction technique (repet):
A simple method for music/voice separation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 21, pp. 73–84, 2013.

[13] J.-L. Hsu and A. Chen, “Efficient repeating pattern finding in music
databases.” in ACM CIKM International Conference on Information and
Knowledge Management, 01 1998, pp. 281–288.

[14] Y.-l. Lo and C.-y. Chen, “Fault tolerant non-trivial repeating pattern
discovering for music data,” in 5th IEEE/ACIS International Conference
on Computer and Information Science and 1st IEEE/ACIS International
Workshop on Component-Based Software Engineering,Software Archi-
tecture and Reuse (ICIS-COMSAR’06), vol. 2006, 08 2006, pp. 130 –
135.

[15] K. Lemström, G. Wiggins, D. Meredith, T. Barn, M. Drove, and
T. Giles, “Algorithms for discovering repeated patterns in multidimen-
sional representations of polyphonic music,” Journal of New Music
Research, 08 2002.

[16] Y. Zhu, H. L. Tan, and S. Rahardja, “Drum loop pattern extraction
from polyphonic music audio,” in 2009 IEEE International Conference
on Multimedia and Expo, 08 2009, pp. 482 – 485.

[17] Shazam. [Online]. Available: https://www.shazam.com. [Accessed:
05.06.2020].

[18] A. Wang, “An industrial strength audio search algorithm.” in 4th
International Conference on Music Information Retrieval, 01 2003.

[19] G. Aloupis, T. Fevens, S. Langerman, T. Matsui, A. Mesa, and G. Tou-
ssaint, “Computing a geometric measure of the similarity between two
melodies,” in 15th Canadian Conference on Computational Geometry,
09 2003.

[20] A. Lubiw and L. Tanur, “Pattern matching in polyphonic music as a
weighted geometric translation problem.” in 5th International Confer-
ence on Music Information Retrieval, 01 2004.

[21] B. Haynes, A History of Performing Pitch: The Story of ’A’. Scarecrow
Press, 2002.

[22] D. M. Randel, The Harvard Dictionary of Music. Harvard University
Press Reference Library, 2003, vol. 4.

[23] Logic Pro X: Use step input recording techniques. [Online]. Available:
https://support.apple.com/kb/PH12977. [Accessed: 05.06.2020].

[24] International Pitch Notation. [Online]. Available: http://www.flutopedia.
com/octave notation.htm. [Accessed: 05.06.2020].

[25] H. F. Olson, Music, physics and engineering. Dover Publications New
York, 1967, vol. 2.

[26] N. Silva, P. C. Weeraddana, and C. Fischione, “On musical onset
detection via the s-transform,” in 2018 52nd Asilomar Conference on
Signals, Systems, and Computers, 2018, pp. 1080–1085.

[27] Dataset and patterns. [Online]. Available: https://github.com/ns2max/
real time patt. [Accessed: 09.06.2020].

[28] Ultimate Guitar. [Online]. Available: http://ultimate-guitar.com. [Ac-
cessed: 05.06.2020].

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 246 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on December 06,2020 at 12:26:11 UTC from IEEE Xplore. Restrictions apply.

