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Abstract—Interoperability represents an important aspect in
research dealing with the emerging class of smart musical
instruments (SMIs). To date, no interoperable file format for
the exchange of content produced by heterogeneous SMIs has
been defined yet. This paper proposes a solution to the issue of
sharing presets among heterogeneous SMIs, which are used to
configure an SMI. The heterogeneity of SMIs may come from
the type, structure and implementation of the SMI’s embedded
system, its sound engine and sensor interface. The presented
solution is based on the “ontology-based data access” paradigm
and leverages the existing Smart Musical Instruments Ontology.
This approach allows one to share presets between heterogeneous
SMIs by mapping information about the configuration of an
instrument to the concepts of the ontology. Thanks to this
approach, SMIs developers can implement programs that convert
proprietary formats for the configuration of the instrument into a
common format for SMIs, and vice versa. We present the general
architecture and workflow of this approach, and we describe an
implementation for it which involves the sharing of presets among
two heterogeneous smart guitars.

Index Terms—Internet of Musical Things, smart instruments

I. INTRODUCTION

The Smart musical instruments (SMIs) are an emerging
class of musical interfaces that encompass sensors, actuators,
embedded intelligence, and wireless connectivity to local
networks and to the Internet [1]. The central component of an
SMI is the embedded system on top of which the intelligent
applications run, i.e., a single board computer and a dedicated
operating system for audio processing and networking tasks.
The sensors composing the sensor interface of an SMI may
be used by the player to modulate via gestures the parameters
of the internal sound engine of the instrument. Examples of
this category of instruments are the smart cajón prototype
described in [2] or the Sensus Smart Guitar developed by Elk
[3]. SMIs are instances of the so-called Musical Things within
the “Internet of Musical Things” (IoMusT) paradigm [4], an
extension of the Internet of Things to the musical domain.
Within this paradigm, heterogeneous SMIs can exchange con-
tent with each other leveraging application and services built
on top of the connectivity infrastructure.

Interoperability is the way in which heterogeneous systems
talk to each other and exchange information in a meaningful
way. An important aspect in SMIs research is that of defining
an interoperable file format for the exchange of content pro-

duced by heterogeneous SMIs. This topic has been preliminary
addressed in [5]. The authors investigated the requirements
for the design of a format specific to SMIs, but that at the
same time could enable interoperability with other devices.
They concluded that the existing standardized formats that are
closest to meet the identified requirements are the IEEE 1599
[6] and the IM AF (MPEG-A: Interactive Music Application
Format) [7] and that both formats need to be extended with
additional features.

In an effort to address an extension of those formats and
foster interoperability across heterogeneous SMIs, the Smart
Musical Instruments Ontology was proposed in [8]. Ontologies
are widely considered in the Internet of Things as a suitable
formal tool for sophisticated data access [9]. They are formal
representations of a domain of interest, expressed in terms
of objects, concepts, links between objects and relationships
between concepts. Ontologies are particularly useful because
they provide a shared vision of the structure of the domain
of interest, and in particular this understanding can be shared
both among people and software agents.

A paradigm exploiting ontologies to achieve data interop-
erability is the “ontology-based data access” (OBDA) [10].
An OBDA system consists of three layers: i) the ontology
layer, i.e., the representation of the conceptual domain; ii) the
data sources, which are described through schemes and related
information; iii) the mapping layer, i.e., the correspondence
between the data sources and the concepts and relations of the
ontology. In OBDA systems, an ontology is used as a high-
level, conceptual view over heterogeneous data repositories,
which enables users to access data without the understanding
of the data sources, the relation between them, or the encoding
of the data. The user can simply pose queries over the high-
level conceptual view defined by the ontology and via the
mappings these queries are translated into queries directly
interfacing with the data sources. Noticeable examples of
OBDA systems are MASTRO [11] and Ontop [12].

This paper proposes a solution to the issue of sharing presets
among heterogeneous SMIs, which are used to configure an
SMI. The heterogeneity of SMIs may come from the type,
structure and implementation of the SMI’s embedded system,
its sound engine and sensor interface. The specific case tackled
in this study is that of SMIs of the same kind (e.g., a smart
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guitar), having the same or a similar sensor interface (e.g.,
composed by a same number and type of sensors), but with
different systems to implement the sound engine and to exploit
the data coming from the sensor interface (e.g., with different
operating systems or the hardware architecture of the single
board computer). The goal is to use a common format for
sharing presets able to configure such different SMIs in the
same way so that they can generate the same sonic output. Our
solution relies on the OBDA paradigm, and is based on the
Smart Musical Instruments Ontology described in [8], which
thus far has not been integrated in a file format for SMIs.

II. SMART MUSICAL INSTRUMENTS

This section provides a high-level view of the architecture
of a smart musical instrument and a description of the smart
musical instruments ontology. The provided details are in
relation to the task of preset sharing tackled in this study.
Therefore, the focus is not placed on other aspects related to
the intelligent capabilities of SMIs such as context-awareness
and proactivity.

A. Architecture of a smart musical instrument

An SMI is an IoT device composed by various components.
The most important components in relation to the present study
are the embedded system, the sensor interface and the sound
engine (see Fig. II-A). The embedded system consists mainly
of a hardware platform, which includes inputs and outputs for
audio and sensors, as well as an operating system dedicated
to real-time audio and sensors signal processing. Most of
existing SMIs prototypes have been built across two embedded
systems, the Bela board [13] and Elk Audio OS [14]. Bela
consists of a cape for the BeagleBone Black platform and
a Xenomai-based operating system, which supports audio
processing software such as Pure Data and Supercollider. Elk
Audio OS is an operating system for high-quality processing
of audio and sensors that is supported for various hardware
platforms, including the Raspberry Pi. It is based on the Xeno-
mai Linux extension and on an architecture supporting audio
processing via commercial and open source audio plugins in
various formats (e.g., VST3, LV2, RE).

The sensor interface is the instrument’s component respon-
sible for the tracking of performative gestures conducted by
the player. A sensor interface may consist of different sensors,
such as a pressure sensor tracking the player’s fingers pressure
onto a part of the instrument, or an inertial measurement unit
tracking the acceleration and tridimensional position of the
instrument.

The sound engine of an SMI is responsible for the gener-
ation of the instrument’s digital sounds. It parallels a typical
digital audio workstation consisting of various components,
including tracks and a mixer. For instance, a component can
process the sounds detected by a microphone by applying
digital audio effects to it; a component can trigger sound
samples thanks to a sampler; a component can generate
sounds resulting from the control of synthesizers and drum
machines; a component can play back different backing tracks.

Audio Fx Samplers Synthesizers Backing TracksDrum Machines

Mixer

Fx1

…

Fxn

Fx2

Fx1

…

Fxn

Fx2

Mapping

Legenda:

Audio signals

Control signals

Sensor interfaceMicrophones

Fig. 1. A schematic representation of the sound engine of a smart musical
instrument.

The parameters of each of these components of the sound
engine can be modulated by the sensors present in the sensor
interface, by means of a set of mapping rules [15]. Bela
and Elk Audio OS implement in radically different ways the
sound engine, the sensor acquisition and processing, and the
mapping between the digitized sensor values and the sound
engine parameters. These are some of the aspects that cause
heterogeneity among SMIs.

B. The Smart Musical Instruments Ontology

The Smart Musical Instruments Ontology1 was specifically
conceived to address the interoperability issues of heteroge-
neous SMIs exchanging information between each other [8].
The ontology models the basic concepts of the hardware
and software components of an SMI, and relates to several
existing ontologies. These includes the SOSA Ontology for the
representation of sensors and actuators [16], the Audio Effects
Ontology dealing with the description of digital audio effects
[17], the Music Ontology that deals with the description of
the music value-chain from production to consumption [18],
the Studio Ontology for representing the domain of technical
workflows occurring in music production [19], and the IoMusT
Ontology for the representation Musical Things and IoMusT
ecosystems [20].

In more detail, the requirements for the ontology were the
following. The SMI Ontology should be able to: i) represent
the concept of SMIs as an instance of Musical Things, includ-
ing its type, characteristics (including the number and type of

1https://w3id.org/smi#
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inputs and outputs), the structure of its sound engine, and the
geographical position; ii) represent the concept of application
and service related to an SMIs, including its purpose, level of
interactivity, type, and user; iii) describe attributes of the music
at a given time, including low-level and high-level features.
A practical use of the ontology in an applicative context has
been recently reported in [21] for the case of the creation of
a database of SMIs.

III. PRESET SHARING ARCHITECTURE

In this section, we describe the workflow and the general
architecture of the OBDA-based mechanism for preset sharing
across heterogeneous SMIs. The first step of the preset sharing
workflow consists of the creation of the preset to be shared.
This is achieved automatically by an SMI, which upon an
action of the player saves a format specific to that SMI, which
contains some configuration files that describe the structure
of the sound engine (e.g., number and type of tracks), the
components present in each track of the sound engine (e.g., the
chain of the digital audio effects), the sensor acquisition and
processing mechanism (e.g., sampling rate, resolution, thresh-
olding, range mapping), and the mapping between sensors and
the sound engine parameters. This instrument-specific format
is then automatically encoded into a general exchange format
for SMIs, by leveraging a translation process that implements
the mapping between the information contained in the files
and the ontology concepts.

Once the preset has been created in the common format for
SMIs, the player can share it by uploading it onto an online
repository. This process can be performed directly by the SMI
thanks to its wireless connectivity feature. A second player,
using another model of the SMI, can then download the preset
from the repository onto his/her instrument. Subsequently, the
preset is decoded from the common SMI format into the
instrument-specific format, by leveraging the mapping process
from the ontology concepts to the information needed to con-
figure the instrument. As a result the instrument automatically
configures itself. Figure III illustrates this whole workflow for
the case of preset sharing across two heterogeneous smart
guitars. Notably, the encoding and decoding processes can be
performed not only directly by an SMI, but also by a server
via cloud computing techniques.

In more detail, the steps for passing from a preset encoded in
an instrument-specific format to the common format for SMIs
include the following. First the instrument-specific format is
parsed in order to extract the information relevant for the
description of the preset. The extracted information is then
mapped to the ontology concepts and as a result a new file
is created which is formatted in a common format for SMIs.
Vice versa, to pass from the common format for SMIs to a
preset encoded in an instrument-specific format the following
steps need to be implemented. First the common SMI format
is decoded following the ontology concepts in order to extract
the information relevant for the configuration of the receiving
instrument. The extracted information is then mapped to the
fields used by the configuration system of the instrument (e.g.,

sound engine effects chain, sensor interface) and as a result a
new preset file is created, which is formatted according to the
format specific to the receiving instrument.

In these encoding and decoding processes, both the sending
and the receiving instrument are fully aware of the mappings
of the concepts of the ontology. Moreover, it is worth noticing,
that not all concepts of the ontology are actually needed
to represent the configuration of the sending and receiving
instrument for the specific aim of creating/utilizing a preset.
For instance, a certain amount of information can be assumed
to be already completely available for the algorithms of the
receiving instrument at the moment of configuring it as well as
of creating the necessary files (e.g., the PD sound engine file).
An example is represented by the fact that the sampling rate
of the sending instrument and that of the receiving instrument
may be different. Such an information is not important to
be represented in a preset file. A similar discussion holds
for other parameters such as the sampling rate of the analog
sensors, which may be different from the original and receiv-
ing instrument. We aim at only describing the information
strictly needed for the preset, not the whole configuration of
the instrument in all its low-level details. As a consequence
the proposed method assumes that the receiving instrument
already provides the extra information not included in the
preset representation deriving from the ontology mappings.

Furthermore, the method is not aiming to replicate exactly
each of the possible effect implementations composing the
effect chain of a sound engine. What is important is the type
of effect utilized (e.g., a reverb). Indeed, in principle it is
not possible to assume that a specific effect implementation
is available on the receiving instrument (e.g., there might be
a different implementation of a reverb effect algorithm). In a
practical case, an algorithm would first check if that specific
implementation is available on the receiving instrument, and
if it is not other automatic mechanisms could be set in place
such as asking the user to download the missing audio effect
from a repository.

IV. CASE STUDY

In order to demonstrate the usefulness and feasibility of
our OBDA approach to preset sharing we report on a real
world application in which it has been experimented. Two
smart guitars with two different sound engines were created.
The first relied on the Bela platform and implemented the
sound engine in Pure Data. The second was based on the Elk
Audio OS running on a Raspberry Pi 4 in conjunction with
a dedicated audio shield and implemented the sound engine
according to the operating system tools, which are based on
audio plugins.

Both guitars featured wireless connectivity capabilities via
Wi-Fi. A local PC acted as a repository server to host the
presets in the common SMI format. Both guitars and server
were locally connected via a Wi-Fi router. To mimic the user’s
process of preset saving and uploading/downloading to/from
the server, we used a smartphone app wirelessly connected to
each guitar. The app consisted of a few buttons allowing the
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Fig. 2. The workflow for smart guitar preset sharing, from the generation of a preset created by a guitarist for a certain smart guitar model, to its uploading
onto an online platform, to the downloading and automatic configuration of a smart guitar of a different model.

users to issue to the respective guitars the control commands
of saving, sharing and downloading the preset. The app, built
using the TouchOSC framework, leveraged the Open Sound
Control protocol for communicating with the instruments.

To illustrate the proposed approach we show a minimal
setup of the instruments, where both smart guitars encom-
passed a simple sensor interface composed by a single pressure
sensor and involved a sound engine with a single track
consisting of a delay with feedback digital audio effect. The
pressure sensor was mapped to the feedback parameter of the
delay effect. In the following step-by-step example we focus
on the scenario in which the powered-by-Elk smart guitar
shares its preset with the powered-by-Bela smart guitar. All
software responsible for the processes involved in the preset
sharing workflow has been coded in python (leveraging the
RDFLib library). The source code is available online2.

Step 1: preset saving in the powered-by-Elk smart guitar
format. The first step consists of saving the configuration of
the instrument according to its instrument-specific format. To
configure an instrument, the Elk Audio OS provides a JSON
configuration file for the sound engine (see listing 1), a JSON
configuration file for the sensor engine (see listing 2), and
a JSON describing the mappings between sensors and sound
parameters (see listing 3). Upon the saving request, these files
are merged together in a single preset file.

Step 2: conversion to the common SMI format. The
preset file generated by the powered-by-Elk smart guitar is
then converted into a corresponding file formatted with the
common SMI format. This format has been defined as a
Turtle file, one of the most common RDF formats used for
the Semantic Web. Firstly, the preset file is decoded into the
composing configurations files (see listings 1, 2, 3). Secondly,
each file is parsed with the aim of extracting the fields relevant
to the generation of the common format, and subsequently
the mapping between such fields and the concepts of the
ontology is performed. Note that not all fields have a general
relevance, therefore they can be ignored and excluded from
the conversion which by design choice is kept as minimal

2https://github.com/lucaturchet/OBDA based SMIs preset exchange/

as possible (e.g., the sample rate of the sound engine is
an information that can be safely excluded as the receiving
instrument may adopt its own sample rate to work). As a
result of this conversion process, the Turtle file is generated
(see listing 4) and automatically uploaded to the server.

Step 3: conversion to the powered-by-Bela smart gui-
tar format. After the download of the Turtle file into the
powered-by-Bela smart guitar, the process of conversion to
the instrument-specific format begins. This process consists of
the translation of the Turtle file into a set of Pure Data files.
Pure Data files can be easily created using the textual syntax
of the program, which allows to specify objects, sub-patches,
and their connections. Notably, for simplicity the translation
process assumes that the smart guitar already possesses an
implementation of the digital audio effect (the delay effect, as
indicated also in listing 4). In the contrary case, it is possible
to implement a mechanism for downloading from a server the
missing files related to a digital audio effect. Fig. IV shows
the generated Pure Data code and the corresponding graphical
representation of the patch.
Listing 1. Portion of the JSON configuration file for the Elk Audio OS
sound engine.

1 "tracks" : [
2 {
3 "name" : "main",
4 "mode" : "stereo",
5 "inputs" : [
6 {
7 "engine_bus" : 0,
8 "track_bus" : 0
9 }

10 ],
11 "outputs" : [
12 {
13 "engine_bus" : 0,
14 "track_bus" : 0
15 }
16 ],
17 "plugins" : [
18 {
19 "path" : "/udata/plugins/mdaDelay.so",
20 "name" : "mdaDelay",
21 "type" : "vst2x"
22 }
23 ]
24 }
25 ]

4
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Fig. 3. The generated Pure Data code and its graphical representation as a
patch (comments added afterwards for clarity’s sake).

Listing 2. Portion of the JSON configuration file for the Elk Audio OS
sensor engine.

1 "sensors" : [
2 {
3 "id" : 1,
4 "enabled": true,
5 "name" : "pressure_sensor_0",
6 "sensor_type" : "analog_input",
7 "mode" : "on_value_changed",
8 "hardware" :
9 {

10 "hardware_type" : "analog_input_pin",
11 "pins" : [0],
12 "delta_ticks" : 1,
13 "adc_resolution" : 8,
14 "filter_time_constant" : 0.020
15 }
16 }
17 ]

Listing 3. Portion of the JSON configuration file for the sensor to
sound-parameter mappings.

1 {
2 "mappings": [
3 {
4 "mapping_id" : 1,
5 "sensor_id" : 1,
6 "name_effect" : "mdaDelay",
7 "effect_parameter" : "Feedback"
8 }
9 ]

10 }

V. DISCUSSION AND CONCLUSION

In this paper we presented a system for SMIs preset sharing
based on the ontology-based data access paradigm. The pro-
posed approach allows one to share presets between heteroge-
neous SMIs by mapping information about the configuration of
an instrument to the concepts of the SMI Ontology [8]. Thanks
to this approach, SMIs developers can implement programs
that convert proprietary formats for the configuration of the
instrument into a common format for SMIs, and vice versa.
As a proof of concept we presented a concrete implementation
of the proposed framework, where two heterogeneous smart
guitars could exchange a file format for their configuration.
The workflow could be completely automatized and the in-
volved software could efficiently run on embedded systems
with relatively low computational capacity.

Recently, the MIDI 2.0 protocol has been developed and
licensed. MIDI 2.0 represents an industry effort to introduce a

semantic layer in the communication among musical devices.
Specifically, MIDI 2.0 is based on the features of Profile
Configuration and Property Exchange (the latter describable
in a JSON file), which may be potentially useful to configure
an SMI. Nevertheless, it is important to note that the MIDI
2.0 and its ecosystem differ from those of SMIs. In this study
we aimed to develop an SMI-specific solution to the issue of
preset sharing. Our approach mainly differentiates from MIDI
2.0 for the fact that we leverage a shared ontology and that it
relies on Semantic Web technologies, whereas MIDI 2.0 is not
ontology-based and does not exploit the power of linked data.
We believe that the adoption of a shared representation like the
SMI ontology is a powerful tool to facilitate interoperability
between heterogeneous SMIs, and in particular to solve the
issue of preset sharing.

In principle, the MIDI 2.0 Property Exchange definitions
could also leverage concepts and relationships described in
the SMI Ontology, and potentially a MIDI 2.0-based preset
sharing mechanism for SMIs could be envisioned. However,
the architectures of Bela and Elk are not yet fully equipped
with MIDI 2.0 support mechanisms that enable the specific
configurations of the respective sound engines and sensor
interfaces. More importantly, MIDI 2.0 development frame-
works are just in their infancy and there are not commonly
available software tools that facilitate their wide adoption. All
these aspects motivated us to develop a specific preset sharing
mechanism for SMIs for such platforms.

Notably, it is important to acknowledge that this study
has the following limitation. The SMI Ontology is an
implementation-driven ontology that evolves during its use
while developing SMIs and SMIs-based applications [8]. As
a consequence, there is a risk that the current definition of
the mappings between local and global schemas required
by an OBDA approach could change in the future. This
may introduce complexities that it is necessary to handle in
a satisfactory way in order to avoid inconsistencies as the
ontologies changes and grow. As noted by Lembo et al. it
is important not to underestimate such a risk [22].

As new SMIs appear on the market, novel proprietary for-
mats may emerge from the musical instruments manufacturing
industry. Artists may be willing to share the configuration
of their instruments with those fans interested in playing
their songs, understanding its structure, or reusing it for their
purposes. Therefore, it is plausible to expect a future need of
a common conversion system across such formats. This paper
was conceived to provide a concrete method to cater to such
need. Notably, while the proposed approach was specifically
devised for SMIs it is in principle possible to apply its general
structure to other musical interfaces in need of exchanging
content (such as configurations of virtual reality headsets or
haptic devices involved in musical activities). This calls for
further research in the field of the IoMusT.
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