
Real-Time Embedded Deep Learning
on Elk Audio OS

Domenico Stefani
Dept. of Information Engineering

and Computer Science
University of Trento

Trento, Italy
domenico.stefani@unitn.it

Luca Turchet
Dept. of Information Engineering

and Computer Science
University of Trento

Trento, Italy
luca.turchet@unitn.it

Abstract—Recent years have witnessed significant advance-
ments in deep learning architectures for music, along with the
availability of more powerful embedded computing platforms
specific to low-latency audio processing tasks. These recent
developments have opened promising avenues for new Smart
Musical Instruments and audio devices that rely on the execution
of deep learning models on small embedded computers. Despite
these new opportunities, there is a lack of instructions on how
to deploy neural networks to many promising embedded audio
platforms, including the embedded real-time Elk Audio OS. In
this paper, we introduce a procedure for deploying audio deep
learning models on embedded systems utilizing the Elk Audio
OS. The procedure covers the entire process, from creating a
compatible code project to executing and diagnosing it on a
Raspberry Pi. Moreover, we discuss different approaches for
the real-time execution of deep learning inference on embedded
devices and provide alternatives for handling larger neural
network models. To facilitate implementation and support future
updates, we provide an online repository with a detailed guide,
code templates, functional examples, and precompiled library
binaries for the TensorFlow Lite and ONNX Runtime inference
engines. This work aims to bridge the gap between deep learning
model development and real-world deployment on embedded
systems, fostering the development of self-contained digital mu-
sical instruments and other audio devices equipped with real-
time deep learning capabilities. By promoting the deployment
of neural networks to embedded devices, we contribute to the
development of Smart Musical Instruments that are capable of
providing musicians and audiences with unprecedented services.

Index Terms—Embedded Audio, Embedded Inference, Deep
Learning Inference, Real-time Audio, Smart Musical Instruments

I. INTRODUCTION

In recent years we have witnessed great advancements in
Deep Learning (DL) architectures for audio [1] [2] and low-
latency embedded computing platforms [3] [4] [5] [6]. DL has
been successfully used to model audio effects [7], manipulate
tone and timbre in new ways [2], and recognize in real-time
high-level properties of a sound source such as expressive
playing techniques [8] or beat tracking [9].

Similarly, the increase in computational power of commonly
available embedded computers fostered the development of
several embedded audio platforms such as Elk Audio OS [3],

Bela [4], Prynth [10], Satellite CCRMA [11], and Axoloti1.
However, developing DL models for audio and deploying them
onto embedded platforms are two tasks that require two very
different sets of skills with little overlap. In particular, DL
requires the following skills:

• Some high-level coding language knowledge;
• Advanced knowledge of the mathematical and probability

concepts behind layers, activations, and other operators;
• Advanced domain knowledge for the data and prepro-

cessing (including preprocessing software and libraries).
Conversely, model deployment requires the following skills:

• Advanced knowledge of lower-level programming lan-
guages (often C++ and C);

• Advanced knowledge of compilation and cross-
compilation procedures for the project and its
dependencies;

• Familiarity with audio processing and feature extraction
libraries for the target programming language. Alterna-
tively, advanced knowledge of Digital Signal Processing
(DSP) concepts and programming to implement the pro-
cessing routines needed.

In this context, we believe that any effort in reducing
the gap between development and deployment for audio and
music DL can foster the creation of new self-contained Digital
Musical Instruments (DMIs), such as Smart Musical Instru-
ments (SMIs) [12], as well as AI-equipped audio devices.
The focus on embedded platforms derives from the need to
provide SMIs with artificial intelligence capabilities through
computing devices that can be physically placed inside these
instruments. SMIs are an emerging family of musical instru-
ments that are a central component of the Internet of Musical
Things (IoMusT), which is the extension of the Internet of
Things (IoT) paradigm to the musical domain [13]. As IoMusT
devices, SMIs are envisioned to be able to communicate and
become part of a “network of interoperable devices” in order
to share and receive musical content. In this context, the
ability to execute DL inference inside SMIs provides a form
of embedded intelligence [12] that can be harnessed for real-
time audio processing, sensor data manipulation, and high-

1http://www.axoloti.com/

20
23

 4
th

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
th

e
In

te
rn

et
 o

f S
ou

nd
s |

 9
79

-8
-3

50
3-

82
54

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IE

EE
C

O
N

F5
95

10
.2

02
3.

10
33

52
04

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

level audio property or feature extraction, which in turn can
be shared with similar instruments in the network. In this
interconnected scenario, embedded inference is particularly
relevant as many real-time music applications do not tolerate
the inherent latency that would be introduced by a cloud-based
DL solution.

Among the embedded platforms mentioned above, Elk
Audio OS [3] and Bela [4] are the most prominent and flexible
systems available in the open-source scenario. Recently, a
pipeline for deploying neural networks to Bela was developed
and documented [14]. On the contrary, while Elk Audio OS
proved to be a very capable platform for real-time DL [15]
[8] [16], no documented deployment procedure exists for the
platform. This hinders the creation of self-contained DMIs
with intelligent features.

In this paper, we describe the steps required to deploy
DL models to the Elk Audio OS on a Raspberry Pi, and
we provide an online repository2 with a detailed guide, code
templates and precompiled dependencies to use either the
TensorFlow Lite or ONNX Runtime inference engines. We
selected such engines because, in our previous study, they
ranked as the best-performing and easiest-to-use inference
engines on the platform [15]. Moreover, TensorFlow Models
can be easily converted to the Lite format, while models
trained in other frameworks like Pytorch can be converted to
the ONNX format. We propose a procedure that uses the open-
source framework JUCE to develop Virtual Studio Technology
(VST) plugins that can be executed on a Raspberry Pi 4 with
the Elk Audio OS. This enables developers and DL engineers
to run real-time and offline audio models on a Single-Board
Computer (SBC) that can be embedded into instruments and
standalone devices. Moreover, a byproduct of learning the
proposed procedure is that the reader will also have the tools
to compile DL-equipped VST plugins for desktop and laptop
computers.

The remainder of this paper is organized as follows. Sec-
tion II reviews other works related to DL and embedded
platforms for audio. In Section III we present the tools required
to follow the guide, and the motivation behind these choices.
Then, Section IV presents an overview of the deployment
procedure to follow in order to create a JUCE project, cross-
compile plugins for Elk Audio OS, install the OS, configure its
Digital Audio Workstation (DAW) and troubleshoot code is-
sues with real-time execution. Furthermore, Section V presents
a few considerations on the different modes of inference, i.e.,
offline, audio-rate real-time, and other real-time approaches.
Finally, we draw our conclusions in Section VI.

II. RELATED WORKS

The deployment of DL models to embedded devices has
recently seen an increase in popularity and relevance. This
was the product of multiple factors, which include the increase
in computing power of embedded devices and SBC and the
research successes in AI for music [1], with a particular

2https://github.com/CIMIL/elk-audio-AI-tutorial

focus on real-time approaches [2]. The effects of the former
manifested earlier in the form of the development of several
open-source audio platforms, such as Elk Audio OS [3],
Bela [4], Prynth [10], and Satellite CCRMA [11]. Meneses
et al. [5] presented a comparison between some of the
aforementioned open-source platforms (i.e., Prynth, Bela, and
a custom processing unit), resulting in a clear overview of
the strengths and drawbacks of the different solutions, which
yielded no clear winner. More recently, the Elk Audio OS was
presented along with a comprehensive comparison with similar
platforms (see [3]). Additionally, Vignati et al. [6] compared
the performance of the Xenomai Cobalt kernel (used by both
Elk Audio OS and Bela) with that of the more common
Preempt RT kernel patch for Linux systems, which resulted
in a better overall performance from the former under heavy
loads.

While most of the aforementioned platforms were not
originally devised to perform DL inference, recent efforts have
successfully shown how integration is possible and can be
made easier for DL developers [14]. Moreover, the increased
interest in embedding DL inference for audio into devices and
musical instruments has led to events that specifically focused
on embedded AI, such as the NIME 2022 workshop Embedded
AI for NIME: Challenges and Opportunities [17].

This paper draws inspiration from the recent work of Pelin-
ski et al. [14], who provided a DL deployment pipeline for
the Bela platform [18]. The pipeline includes a tool to record
sensor reading datasets and a cross-compilation environment
to ease the deployment of DL models to Bela. With the latter,
the authors stated their intent to promote fast prototyping and
experimentation with neural networks for embedded real-time
musical applications. The pipeline proposed by the authors
is based on the TensorFlow Lite inference engine, and the
authors provide a Docker container to cross-compile Bela-
compatible DL programs from a host computer. Various efforts
by other researchers have been made in similar directions
(e.g., Flucoma-Bela3). Nevertheless, the work by Pelinski
et al. relates more closely to this paper, as it presents a
clear and stepwise deployment process without assuming deep
knowledge of low-level programming concepts and it offers
a prepackaged cross-compilation tool to ease the deployment
itself.

The main distinction of our work lies in its focus on a
radically different platform: the real-time Elk Audio OS and
the Raspberry Pi 4. While the combination of Elk Audio
OS and Raspberry Pi 4 has been used for DL deployment
before [15] [8] [16], the deployment process has not been
documented yet. Moreover, the Raspberry Pi offers more
powerful hardware than the latest Bela, which can enable
more intense tasks such as AI-based audio processing. For
this reason, we provide code examples that execute inference
at audio rate on the input signal (Section III-D) instead of the
sensor data processing example provided by Pelinski et al. .
Moreover, we provide both clean templates and code examples

3https://github.com/jarmitage/flucoma-bela

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

for both TensorFlow Lite and ONNX Runtime, to ease the
deployment process for a wider range of DL frameworks.

III. TOOLS

A. JUCE and VST

JUCE is a cross-platform framework for audio plugins and
applications. It is a C++ framework with a dual license (i.e.,
GPLv3 open-source and commercial). JUCE embeds the VST3
SDK and Elk Audio provides support and instructions on how
to build a JUCE plugin for their OS. The procedure reported
in this paper, and in more detail in the project repository, was
tested with JUCE 6 (version 6.0.7).

B. Elk Audio OS

Elk Audio OS [3] is an embedded operating system
optimized for low-latency audio processing on embedded
hardware. Currently, Elk offers a disk image and a cross-
compilation SDK for the Raspberry Pi 4 SBC as open-source,
and more hardware platforms4 under a commercial license.
Moreover, up to Elk Audio OS version 0.7.2 Raspberry Pi 3
was supported. The instructions in this paper refer to version
0.11.0. Potential differences in the deployment process for
future versions of the Elk Audio OS will be documented in
the project’s repository (Section III-D).

C. Choice of Inference Engine

Inference of DL models is the process of running an
input through the network and executing all the computations
required to produce an output prediction. DL models are
generally trained and tested in powerful server machines or
PCs, using high-level programming languages (e.g., Python)
and DL frameworks (e.g., PyTorch, TensorFlow). Training
through backpropagation is a particularly compute-intensive
task that often requires specialized acceleration hardware
and drivers (e.g., CUDA GPUs or TPUs). On the contrary,
inference is considerably less computationally expensive and
can be optimized for deployment.

In recent years, DL framework companies and developers
have focused on in-device inference for edge and mobile
computing. In IoT, edge computing has the great advantage
of performing relevant computations closer to where input
data is gathered. Even more so, embedded in-device inference
can be advantageous in terms of action-to-reaction latency,
since inference computations can be performed right at the
place where the inputs are gathered through sensors, which
is devoid of the latency of communication with one or more
cloud servers. While in-device computation can have marginal
advantages in some IoT, it is an indisputable requirement of
music performance tools and many IoMusT systems, even
when the learning task allows for slightly more lenient time
constraints than audio-rate deadlines [8] (see Section V). For
this reason, several C and C++ libraries known as inference
engines were made available along with most DL frameworks,

4https://elk-audio.github.io/elk-docs/html/intro/supported_hw.html

to allow for efficient and quick inference, especially for
resource-constrained embedded devices.

Our previous work [15] compared the performance and
suitability of four of these engines (i.e., TensorFlow Lite,
ONNX Runtime, Torch+Torchscript, and RT Neural) for audio
tasks on a Raspberry Pi 4 running Elk Audio OS. While exact
execution time can depend on a specific model, ONNX Run-
time and TensorFlow Lite have been shown to be very quick,
well-documented, and easy to use. For the code templates in
the repository that follows this paper, we decided to include
separately both TensorFlow Lite and ONNX Runtime because
TensorFlow users will find it extremely easy to export their
model for the former, while models from most frameworks
can also be converted to the ONNX including PyTorch5 too.
Support for ONNX Runtime is particularly relevant as a large
part of research on black-box audio effect emulation is cur-
rently carried out using Pytorch [7] [19] [20] and PyTorch-to-
TensorFlow model-conversion is not a straightforward process.

For TensorFlow developers, we suggest choosing the Ten-
sorFlow Lite template code, while PyTorch and other devel-
opers should convert their models to ONNX and use ONNX
Runtime.

D. Project’s Repository

This paper defines a procedure to successfully deploy DL
models to embedded devices running Elk Audio OS and
perform inference. While this paper reports an overview of
the deployment procedure, we provide a detailed guide, clean
source code templates, working examples, and inference
engine binaries in order to reduce the effort required for
deployment. This substantial addition to the written part of
this paper is contained in the elk-audio-AI-tutorial
repository on the GitHub page of the Creative, Intelligent
& Multisensory Interactions Laboratory (CIMIL):
https://github.com/CIMIL/elk-audio-AI-tutorial/ .

The guide in the project’s repository goes into more detail
on the deployment process, and it will be kept up to date,
addressing potential changes in the new version of Elk Audio
OS or inference engines.

IV. DEPLOYMENT PROCEDURE

This section presents an overview of the procedure to deploy
a DL model to a Raspberry Pi running the Elk Audio OS.
This procedure can also be followed for deployment to a VST
plugin (ignoring cross-compilation and device-specific steps)
for any platform, including Windows, MacOS, and Linux. All
the code and library binaries required to follow the guide are
provided in the project repository (see Section III-D), and
they will allow readers to skip parts of the guide for easier
deployment (e.g., library compilation can be skipped if using
the provided binaries). Further updates, improved instructions,
and additional inference engines will be added to the detailed
guide in the repository.

Instructions assume the use of a Unix-based OS (e.g.,
Ubuntu Linux), but they also can be followed using Windows

5https://pytorch.org/docs/stable/onnx.html

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

with the Windows Subsystem for Linux (WSL) or a Linux
virtual machine. As mentioned previously, the instructions in
this paper refer to version 0.11.0 of Elk Audio OS, but the
project repository will be updated with new versions of the
OS. Figure 1 shows an overview of the entire deployment
process.

The next sections will describe the following steps:
1) Creation of a JUCE project for DL deployment on Elk

Audio OS (Section IV-A);
2) Cross-compilation of a plugin and its dependencies

(Section IV-B);
3) Installation and communication with Elk Audio OS

(Section IV-C);
4) Configuration of Elk’s DAW Sushi (Section IV-D);
5) Troubleshooting (Section IV-E);

A. Project creation

JUCE plugin projects can be created using the Projucer app,
which is provided with any JUCE distribution. The Projucer
handles the configuration of the project, its export formats, and
its build systems along with their different configurations (i.e.,
exporters). Moreover, it takes care to create the build files for
each exporter whenever the project is saved in the Projucer
app. Additionally, it can execute a user-defined command
every time a project is saved (post-export Shell command).
It is also possible to use CMake to set up JUCE projects, but
this will not be covered by the guide.

The following two alternatives can be used to obtain a JUCE
project to compile VST plugins that will be compatible with
Elk Audio OS:

• Use of one of the provided templates;
• Manual project creation.
1) Templates: The project repository (see Section III-D)

contains template projects for ONNX Runtime and Tensor-
Flow Lite. These include the precompiled dependencies and a
project configuration (.jucer file). The project configuration
file ensures that the relative inference library is correctly
linked, headers are included and it creates a cross-compilation
script for Elk Audio OS.

The user should open the .jucer file with the Projucer
and save the project to create the build folder structure. After
each change of configuration (e.g. renaming the project), the
.jucer file should be opened with the Projucer app and

saved. Users are expected to modify the template code that
loads an inference model and executes inference depending
on their needs and according to the documentation of each
engine6.

Notably, even if Elk Audio OS only handles headless plug-
ins (i.e., without graphical user interface (GUI)) for optimized
latency, it is not necessary to remove any GUI code from the
plugin editor, as the graphic routines will simply not be called
by the Sushi DAW.

6https://www.tensorflow.org/lite/guide/inference#load_and_run_a_model_
in_c, https://onnxruntime.ai/docs/get-started/with-cpp.html

2) Manual Creation: The steps needed for manually creat-
ing a JUCE project for a VST plugin that is compatible with
Elk Audio OS are the following:

1) Creation of a JUCE project for an audio plugin;
2) Editing of project settings for compatibility with Elk

Audio OS;
3) Addition of external library binaries and headers (e.g.

TensorFlow Lite or ONNX Runtime);
4) Creation of a Linux exporter;
5) Creation of a cross-compilation script
The details of manual project creation steps are discussed

in the up-to-date guide in the project repository.

B. Cross-compilation for Elk Audio OS

Deploying any plugin to Elk Audio OS (especially for
Raspberry Pi and resource-constrained devices) will generally
involve cross-compilation. Cross-compilation is a technique
by which source code is compiled with a cross-compiler on a
host computer, resulting in a binary file that is executable on a
target computer with an architecture different from that of the
host. This enables the compilation of binary executables for
embedded devices from a different machine architecture which
can take advantage of more powerful hardware. While native
compilation on the Raspberry Pi is possible, it is discouraged
as anything other than the last resort due to the constrained
resources available, thus long computation times (i.e., tens
of hours for most engines). For example, we successfully
performed cross-compilation with an x86-64 Linux computer
as the host, while the target is an ARM 64bit SBC (aarch64
architecture), running the Linux-based real-time Elk Audio
OS. To cross-compile any program for a Raspberry Pi with Elk
Audio OS, the Elk-PI SDK corresponding to the OS version
of choice should be installed and used7.

It is not necessary to follow the next step (i.e., Dependen-
cies Compilation) to compile a project that depends only on
the inference library of choice, as the pre-compiled binaries
are included in the project repository (Section III-D).

1) Dependencies Compilation: To cross-compile a plugin,
any eternal dependency needs to be compiled too. In the
case of a simple plugin that integrates DL inference, the sole
direct dependency will be the inference engine library (e.g.,
TensorFlow Lite or ONNX Runtime). Additionally, each direct
dependency may have sub-dependencies that might need to be
included for compilation (See the TensorFlow Lite template in
the project’s repository).

Cross-compilation of the dependencies is complex and not
always possible. It can be hard to set up cross-compilation,
especially for libraries that were not prepared for it, that are
not well documented, or that use less known build systems. Li-
braries that rely on CMake8 can be integrated reasonably well
with Elk’s toolchain. The main steps for cross-compilation of
these libraries are the following:

1) Downloading and installing the Elk-PI SDK;

7https://github.com/elk-audio/elkpi-sdk/releases
8https://cmake.org/

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

Projucer App Plugin Binary

Plugin
Source Code

Makefile

Library
Binary

Library
Source Code

CMakeLists.txt

Makefile

 Data

TensorFlow
model

Lite
model

 Data

ONNX
model

 torch.onnx.export

1

2

Sushi DAW

Plugin Binary

JSON Config

Model

Elk Audio OSHost Computer

 scp

 scp

Model

Elk-PI SDK
Toolchain cmake

 make

 make

Train/Test
Script

Train/Test
Script

TFlite
Converter

Fig. 1. Diagram depicting the process of deploying a DL model to an embedded device running Elk Audio OS. Plugin and dependency compilation happens
on a Host computer (top left), where the Elk-PI toolchain allows to cross-compile the source code. Library binaries are linked during plugin compilation,
which produces the binary file for a VSTplugin that can execute on the target device (right). The compiled plugin has to be moved to the embedded computer
running Elk Audio OS, where Elk’s DAW Sushi can be configured to load it into a new track and process audio in real-time. The lower part represents the
training, testing, and model export phases required for either TensorFlow or frameworks that export to the ONNX format, such as Pytorch. Dashed arrows
labeled as 1 and 2 represent two distinct options for model integration: in option 1 the DL model gets integrated as JUCE BinaryData into the plugin’s binary,
while for option 2 the model can be simply copied to the device. For the latter, the plugin code must load the model from a path relative to the target’s folder
structure.

2) Downloading the library source code for the desired
version;

3) Creating a build folder;
4) Resetting the LD_LIBRARY_PATH variable and sourc-

ing the Elk-PI SDK;
5) Executing CMake from the build directory:

cmake path/to/CMakeLists/dir/ ;
6) Compiling with make .

A working example can be found in the repository for this
project (see Section III-D) for the TensorFlow Lite template.
The example shows how the actual compilation procedure
can deviate from the ideal process, due to peculiar charac-
teristics of some sub-dependencies or bugs. In particular, for
TensorFlow Lite 2.11.0 it is necessary to change the version
of the dependency FlatBuffers from 2.0.6 to 2.0.8 and
overwrite the CMAKE_SYSTEM_PROCESSOR variable. This
build variable is set to cortexa72 by Elk toolchain, but the
Abseil dependency requires aarch64 to avoid incorrect

library linking. Both corrections were informed by comments
in the Issues section of the Abseil and TensorFlow GitHub
repositories, which were consulted by searching for specific
error messages produced by failed compilation runs. A similar
informed trial and error procedure can be followed for other
libraries.

When cross-compilation cannot be set up, compilation can
be performed natively on the Raspberry Pi, at the expense
of high completion time. Users should follow the build in-
structions of the specific library for any Linux system. This
may require compiling other sub-dependencies separately, in
case they are not included in Elk Audio OS, or automatically
fetched during compilation setup. This was the case for ONNX
Runtime, whose compilation required a few tens of hours on
the board, and for which the compiled binary is provided in
the repository of this project.

Whenever a dependency compiles to a dynamic library (i.e.
*.so files), the binary is needed both at linking time (on

the host computer) and at execution time (on the board),

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

when the library is loaded dynamically. This means that the
compiled .so binary for any dependency must be copied
to the board, and placed in one of the system library paths
(Run echo $LD_LIBRARY_PATH on the device to find dy-
namic loading paths). Alternatively, if placed in any other
directory, the folder containing the binary should be appended
after each reboot, either manually or automatically9, to the
LD_LIBRARY_PATH system variable as follows:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/libpath/

On the contrary, static libraries (i.e., *.a files) are automat-
ically included in the plugin binary and do not need to be
copied to the board.

2) Plugins Compilation: Once the inference engine and
other libraries required are compiled and properly added to the
compilation exporter (see Projucer configuration in the project
repository, Section III-D), the plugin can be compiled multiple
times without re-compiling dependencies.

Assuming a correct Projucer setup, the steps for plugin
compilations are the following:

1) Saving the project from the Projucer app, to create the
build structure;

2) Opening the terminal in the /build/linux-aarch64
folder;

3) Resetting LD_LIBRARY_PATH ;
4) Sourcing the Elk-PI SDK;
5) Compiling with make , specifying

JUCE_HEADLESS_PLUGIN_CLIENT=1 ;
6) For VST3 plugins, renaming the

PluginName.vst3/Contents/arm64-linux folder
to aarch64-linux .

Additionally, before the make command, the user can specify
additional optimization flags such as the following:

export CXXFLAGS="-O3 -pipe -ffast-math -feliminate-
unused-debug-types -funroll-loops"

The following is a simplified compilation script for any plugin
project.

unset LD_LIBRARY_PATH

source /opt/elk/0.11.0/environment-setup-cortexa72-
elk-linux

export CXXFLAGS="-O3 -pipe -ffast-math -feliminate-
unused-debug-types -funroll-loops"

AR=aarch64-elk-linux-ar make \
-j$(nproc) CONFIG=Release\
CFLAGS="-DJUCE_HEADLESS_PLUGIN_CLIENT=1 -Wno-psabi"\
TARGET_ARCH="-mcpu=cortex-a72 -mtune=cortex-a72"

C. Elk Audio OS on the Raspberry

Elk Audio OS v0.11.0 is available as open source for
the Raspberry Pi 4 board10, while older versions support

9The export line can be added to the ~/.bashrc or

/etc/profile text file for automatic execution.
10https://github.com/elk-audio/elk-pi/releases

also the Raspberry Pi 3. More SBCs are supported under a
commercial license. The OS image should be downloaded
from the GitHub repository and flashed to a good-quality SD
card. The Raspberry Pi must be coupled with an audio “hat”
board supported by the OS, such as the HiFiBerry DAC+ ADC
and HiFiBerry DAC+ ADC Pro boards.

Once an audio hat board is connected to the Raspberry Pi
and the OS SD is inserted, the board should be powered on
and the user can access the terminal either using a monitor
connected via HDMI or with a remote Secure SHell (SSH)
connection. Elk Audio OS does not have a GUI and requires
the user to control it via terminal, or via network (e.g., using
the Google Remote Procedure Calls (gRPC) or Open Sound
Control (OSC) protocols). For remote access to the terminal,
the board can be connected via an ethernet cable to either a
network router or a computer directly. After the first successful
access, the terminal can be used to connect the board to a Wi-
Fi network if desired. The default hostname for Elk-Pi boards
is elk-pi.local and it can be used to identify the board
in a local network. To ensure that the board is connected, use
the ping command as follows and wait for a positive reply:

ping elk-pi.local

The arp -a command on a Linux terminal can be useful
to find the board IP address if the hostname is not reachable.
Then, the SSH protocol can be used to access the terminal
remotely. The ssh command is available on Linux, MacOS,
and the latest Windows 10 and 11 terminals (PowerShell). For
previous versions of Windows or PowerShell, SSH clients such
as Putty11 can be used to replace remote terminal and copy
functions. The board can be accessed via the terminal with the
following command:

ssh mind@elk-pi.local

The default password is elk .
Once a connection is made, files such as the compiled

Plugin, configuration files, and dynamic libraries can be copied
to the board using scp 12 from the host computer:

scp -r /path/to/PluginName.vst3 mind@elk-pi.local:~/
scp libonnxruntime.so mind@elk-pi.local:~/

D. DAW configuration: Sushi

Once a VSTplugin is copied to the board, it can be hosted
via Elk Audio OS’s DAW Sushi. Similarly to other DAWs,
Sushi allows the creation of multiple tracks, where each can
have one or more audio and MIDI inputs and outputs. Each
track can have a chain of plugins, which are loaded as a
dynamic library at runtime. However, differently from most
other DAWs, the GUI code of the hosted plugins is neither
shown nor called by Sushi, and the audio processing callback
is executed on a hard real-time Xenomai thread for low latency
processing.

11https://www.putty.org/
12https://linux.die.net/man/1/scp

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

For these reasons, executing the plugin prepared in the
previous steps requires the configuration and execution of
Sushi. Configurations are prepared in the form of JSON files.
The following is a configuration file that will prompt Sushi to
create a mono track with a single audio input and output, and
to load the VST3 plugin “PluginName”:

{
"host_config":{ "samplerate":48000 },
"tracks":[

{
"name":"main",
"mode":"mono",
"inputs":[

{
"engine_channel":1,
"track_channel":0

}
],
"outputs":[

{
"engine_channel":1,
"track_channel":1

}
],
"plugins":[

{
"uid":"PluginName",
"path":"/path/to/vst/PluginName.vst3",
"name":"arbitrary_plugin_name",
"type":"vst3x"

}
]

}
],
"midi":{

"cc_mappings":[]
}

}

Alternatively, the configuration for a stereo track should use
the following mode , inputs , and outputs field values:

"mode":"stereo",
"inputs":[{

"engine_bus":0,
"track_bus":0

}],
"outputs":[{

"engine_bus":0,
"track_bus":0

}]

More configuration file examples are provided in the project
repository (Section III-D).

Once a configuration file is prepared, Sushi must be exe-
cuted via the terminal by providing the audio driver type and
the configuration file path:

sushi -r -c "/path/to/config.json"

where the -r option specifies to use Elk’s RASPA low-
latency front-end. Users can add more options such as
-multicore-processing=2 to allow Sushi to use more

cores. Moreover, “ & ” can be added at the end of the
command to start Sushi in the background and keep using
the terminal. The background execution can later be stopped
with pkill sushi . If Sushi fails to start, errors in the

configuration or plugin can be identified in the log file
/tmp/sushi.log . The next section will provide a brief

overview of diagnostic tools.

E. Diagnostic tools

By default, Sushi logs events and errors at run-time to the
file /tmp/sushi.log . The logging level can be changed
using the -l flag. The log can show errors such as having
a plugin uid that does not match the actual VST3 unique-id
or having an incorrect configuration format. Additionally, the
-timing-statistics flag will prompt Sushi to log the

fraction of CPU time available used for processing. This is
particularly relevant for DL models meant to be executed in
real-time, with one or more inference operations per audio
block, as this will show if the plugin is reaching the allotted
time budget for each call or even surpassing it. The next
section will present a brief overview of different execution
modes, including a few considerations on how to deal with
real-time tradeoffs and large models.

Notably, Elk Audio OS provides tools to diagnose real-
time execution issues since any part of the code that is meant
to execute in real-time must respect specific real-time safe
programming rules [21]. These rules include not allocating
memory dynamically from the audio thread, not using locking
mechanisms for concurrent memory access, or not waiting
on lower-priority threads (e.g., querying system timers). In
general, these rules can be summarized as “do not perform
(on the audio thread) operations that have unbounded or
unknown completion time”. The inference libraries included
were tested [15] and deemed real-time safe, but user code that
is added to a plugin should respect the same rules.

Being Elk Audio OS a system based on a dual kernel, with
audio processing running on Xenomai real-time threads, it can
be straightforward to verify whether user code is violating real-
time safety and troubleshoot the problem. In fact, in Elk Audio
OS, non-safe operations in the audio callback will result in a
mode switch, i.e., the system will give control back to the reg-
ular Linux kernel to handle the unsafe operations and switch
back to the Xenomai kernel. Up to version 0.11.0 of Elk Audio
OS, mode switches can be monitored by looking regularly at
the MSW column in the /proc/xenomai/sched/stat file.
The following command will update its output every three
seconds:

watch -n 3 cat /proc/xenomai/sched/stat

Version 1.0.0, which was released while this procedure was
being finalized, requires using the evl ps -s command
instead and looking at the ISW counter.

The number of mode switches must remain stable after the
plugin startup, with one or two mode switches being allowed
at startup if not audible as artifacts. In the case of repeated
mode switches, their origin can be traced back to the original
source code using the gdb debugger as follows:

1) Running the GNU Debugger gdb on the sushi exe-
cutable for the current block size (default 64):

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

gdb sushi_b64

2) Setting gdb to stop whenever the SIGXCPU signal is
sent by the program:

catch signal SIGXCPU

3) Running Sushi with the debug-mode-sw flag:

r -r --debug-mode-sw -c config.json

Finally, the Elk Audio forum13 can be a useful source to find
support and solve similar problems.

V. CONSIDERATIONS ON REAL-TIME INFERENCE

Audio-related applications of machine learning and DL
can be separated into real-time and non-real-time (or offline)
cases [22]. This distinction is used especially for audio tasks,
and the terms must not be confused with the online and offline
terms used to refer to single-sample and batch learning in DL
research.

Audio Thread

Fig. 2. Representation of repeated calls to the audio processing routine on
the real-time thread. Black vertical lines represent the boundaries of the time-
budget slots available to process each incoming audio buffer. In this case,
green boxes represent computations on the input audio buffers, which are
safely performed within the time budget available (i.e., before the current
output buffer is consumed and the next input buffer is read).

In particular, real-time audio analysis and processing algo-
rithms must be designed to continuously process audio data
and produce a result (i.e., audio or other data) before pre-
defined problem-specific deadlines. An example is a real-time
audio effect: in this case, audio must be processed faster
than it is consumed as output, to avoid incurring in buffer
underruns [6]. Since digital audio is, in most cases, buffered
into short audio blocks and processed at a set rate, this means
that an input buffer of X samples should be processed and
copied to the output in less than X

samplerate seconds. Figure 2
depicts a situation in which computations are safely performed
within the allotted time budget for each call to the audio
processing routine. This is the case of the examples provided
in the project’s repository, where inference of a small neural
network that models audio saturation is executed for each
sample in the audio buffer. The provided examples run with
the default of 64 samples per block and a samplerate of 48
kHz, and report using about 15% (on the Raspberry Pi 4) of
the 1.33 ms available for each processing routine call (i.e.,

64
48,000).

However, the execution time of a model depends on the CPU
used (or acceleration hardware like GPUs, if available) and the
optimizations performed by the inference engine (see [15]).
For this reason, a model that executes well within the allotted

13https://forum.elk.audio/

time budget on a laptop or desktop computer could struggle
on a resource-constrained device such as the Raspberry Pi.
Figure 3 depicts such a situation, where a set of computations
fails to complete before the output buffers need to be converted
to analog, and the new input buffer is read. This results in
audible artifacts appearing in the output signal due to the
corrupted buffers.

Audio Thread

Fig. 3. Representation of a set of computations performed on the real-time
audio thread, which fail to safely complete within the allotted time budget.
The darker area represents the overlap with the subsequent call to the audio
processing routine. If this happens, audible artifacts are produced in the output
signal.

Audio Thread

Twine Threads

Fig. 4. Representation of an audio system where a costly series of operations
has to be conducted at the rate of the audio callback, but it can be broken up
into separate and independent tasks. In this case, different independent sets of
computations can be performed in parallel on separate threads. Elk provides
the TWINE library for real-time threads and worker pools15.

In the case of a DL model that must execute for each audio
routine call (e.g., effect modeling), most of the solutions will
involve finding a tradeoff between latency and quality of the
results. Some of these potential solutions, with which a DL
developer is likely to often cross, are the following:

1) Increasing the time budget. This can be achieved by
increasing the audio-block size or reducing the sample
rate. These choices will inevitably increase the latency
between input and output, but the time available for
processing is increased. While increasing audio-block
size means having more samples to process for each
call, it means also reducing function call overhead, and
processors can be more efficient by performing more
operations at once.

2) Optimizing on the model. A first possibility is to train
smaller models for the same task, which could mean
having to find a compromise between size and “result
quality” (e.g., error or accuracy). Transfer learning and
knowledge distillation are techniques that can help retain
a satisfactory quality of the results while using small
models. Alternatively, some of the possibilities that do
not affect model design are quantization and pruning.
Quantization involves reducing the resolution of the

15https://github.com/elk-audio/twine

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

network weights (e.g., from 32-bit float values to 8-
bit integers). Pruning consists of progressively setting
weights of the network to zero, which means, in an
inference engine that supports sparse execution, skipping
some of the multiplications during inference. All the
alternatives above may reduce accuracy or increase test
error in the results.

3) Parallel execution. Finally, in the seldom situations
where the set of computations that take longer than the
time budget can be broken down into more manageable
and independent sets, these can be assigned to multiple
real-time threads. In the quad-core (4 cores) Cortex-A72
processor of the Raspberry Pi4, more than one thread
can be executed at the same time. However, this is only
possible if the tasks to run in parallel are completely
independent of the results of each other. This situation
is depicted in Figure 4.

However, not all real-time audio analysis or classification
systems need to run entirely for each call of the audio
processing routine. This is the case with event-based systems,
where deep signal analysis only needs to be performed when
an event happens. An example can be a note-based real-time
guitar technique classifier [8] where the prediction model is
only executed upon onset detection. In the very likely case that
events are expected to happen less frequently than processing
routine calls (e.g., less frequently than one every 1.33ms
for 64 sample blocks and 48 kHz sample rate), the only
part of the system that needs to execute for each block is
the detection stage (e.g., fast detection of onsets with DSP
methods). In this case, the more in-depth analysis, which can
involve deep inference, can be executed solely when triggered
by detection, and take more time for completion, depending
on the minimum inter-event time allowed. In this situation,
however, it is necessary to offload the classification to a high-
priority thread outside of the hard-real time kernel, to allow
inference to take longer than a block without affecting the
audio output. If needed, results can be moved to the real-
time thread after inference has been completed (see Figure 5).
In this case, it is of extreme importance to move input data
and results without using locking data structures or unsafe
operations. This is the case of the expressive guitar technique
classifier presented in [8].

VI. CONCLUSIONS

In this paper, we presented a procedure for deploying real-
time DL inference on an embedded computer with Elk Audio
OS. The procedure covers the steps from the creation of a
compatible code project to the execution and diagnostic of a
VSTplugin on a Raspberry Pi. Furthermore, we discussed dif-
ferent approaches to the real-time execution of deep learning
inference on embedded devices and presented the alternatives
that can be followed for larger neural network models. Along
with this paper, we provided an online repository with a de-
tailed and up-to-date guide, code templates, working examples,
and library binaries for the two inference engines supported.
The code repository serves the purpose of helping the reader

Audio Thread

Accessory

Thread

Fig. 5. Representation of a digital audio system with a more relaxed real-
time constraint than those of Fig. 2 (i.e., not audio-rate deadlines) where some
costly computations must be performed less frequently than calls to the audio
callback and can be conducted on a separate thread. This can be the case of
event-based DL inference [15], where signal analysis is performed only when
events are detected. In these cases, event detection is a less costly operation
performed for each audio block, while the heavier analysis is allowed to take
more than the time budget for a single audio callback call.

to deploy their models but also to provide updates in case the
process is subject to change with future versions of Elk Audio
OS and the inference engines. This work enables developers
and machine learning engineers to start executing inference of
audio deep learning models on small embedded computers.
A limitation of this study is that library cross-compilation
can follow a very different process for other libraries, while
this study focused mostly on providing a procedure for the
TensorFlow Lite and ONNX Runtime libraries. This excludes
some of the processing libraries that a developer could need
for music information retrieval or applications based on audio
spectrograms. Lastly, some of the details of the deployment
procedure could become obsolete with updates to Elk Audio
OS and inference engines. For this reason, this paper presented
a general overview of the procedure, while a more detailed
and updated guide is available in the project’s repository.
Furthermore, we believe that the procedure outlines a coherent
process that will remain similar at its core. Finally, the
accompanying code repository will be a useful resource as
systems and libraries progress and change. The authors hope
that the content of this study can contribute to the development
of SMIs and associated services for musicians.

REFERENCES

[1] J. Engel, L. H. Hantrakul, C. Gu, and A. Roberts, “DDSP: Differentiable
digital signal processing,” in International Conference on Learning
Representations, 2020.

[2] A. Caillon and P. Esling, “RAVE: A variational autoencoder for fast and
high-quality neural audio synthesis,” CoRR, vol. abs/2111.05011, 2021.

[3] L. Turchet and C. Fischione, “Elk Audio OS: an open source operating
system for the Internet of Musical Things,” ACM Transactions on the
Internet of Things, vol. 2, no. 2, pp. 1–18, 2021.

[4] A. McPherson and V. Zappi, “An environment for submillisecond-
latency audio and sensor processing on beaglebone black,” in Audio
Engineering Society Convention 138. Audio Engineering Society, 2015.

[5] E. Meneses, J. Wang, S. Freire, and M. M. Wanderley, “A comparison
of open-source linux frameworks for an augmented musical instrument
implementation,” in Proceedings of the Conference on New Interfaces
for Musical Expression, 2019, pp. 222–227.

[6] L. Vignati, S. Zambon, and L. Turchet, “A comparison of real-time
Linux-based architectures for embedded musical applications,” Journal
of the Audio Engineering Society, vol. 70, no. 1/2, pp. 83–93, 2022.

[7] A. Wright, E.-P. Damskägg, V. Välimäki et al., “Real-time black-
box modelling with recurrent neural networks,” in 22nd international
conference on digital audio effects (DAFx-19), 2019, pp. 1–8.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

[8] D. Stefani and L. Turchet, “On the Challenges of Embedded Real-Time
Music Information Retrieval,” in Proceedings of the 25-th Int. Conf. on
Digital Audio Effects (DAFx20in22), vol. 3, Sept. 2022, pp. 177–184.

[9] S. Böck and M. Schedl, “Enhanced beat tracking with context-aware
neural networks,” in Proc. 14th Int. Conf. on Digital Audio Effects
(DAFx-11), 2011, pp. 135–139.

[10] I. Franco and M. Wanderley, “Prynth: A framework for self-contained
digital music instruments,” in International Symposium on Computer
Music Multidisciplinary Research. Springer, 2016, pp. 357–370.

[11] E. Berdahl and W. Ju, “Satellite CCRMA: A musical interaction and
sound synthesis platform,” in Proceedings of the Conference on New
Interfaces for Musical Expression, 2011, pp. 173–178.

[12] L. Turchet, “Smart Musical Instruments: vision, design principles, and
future directions,” IEEE Access, vol. 7, pp. 8944–8963, 2019.

[13] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet, “Internet
of Musical Things: Vision and Challenges,” IEEE Access, vol. 6, pp.
61 994–62 017, 2018.

[14] T. Pelinski, R. Diaz, A. L. B. Temprano, and A. McPherson, “Pipeline
for recording datasets and running neural networks on the bela embedded
hardware platform,” in Proceedings of the International Conference on
New Interfaces for Musical Expression, 2023.

[15] D. Stefani, S. Peroni, and L. Turchet, “A comparison of deep learn-
ing inference engines for embedded real-time audio classification,” in
Proceedings of the Digital Audio Effects Conference, 2022.

[16] K. Bloemer, “GuitarML-NeuralPi,” https://github.com/GuitarML/
NeuralPi, 2021.

[17] T. Pelinski, V. Shepardson, S. Symons, F. S. Caspe, A. L. Ben-
ito Temprano, J. Armitage, C. Kiefer, R. Fiebrink, T. Magnusson,
and A. McPherson, “Embedded AI for NIME: Challenges and Op-
portunities,” International Conference on New Interfaces for Musical
Expression, jun 22 2022.

[18] A. McPherson and V. Zappi, “An environment for Submillisecond-
Latency audio and sensor processing on BeagleBone black,” in Audio
Engineering Society Convention 138. Audio Engineering Society, 2015.

[19] M. Comunità, C. J. Steinmetz, H. Phan, and J. D. Reiss, “Mod-
elling black-box audio effects with time-varying feature modulation,”
in ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[20] A. Wright and V. Välimäki, “Neural modeling of phaser and flanging
effects,” Journal of the Audio Engineering Society, vol. 69, no. 7/8, pp.
517–529, 2021.

[21] R. Bencina, “Interfacing real-time audio and file i/o,” in Proc. of the
Australasian Computer Music Conference (ACMC), 2014, pp. 21–28.

[22] W. Brent, “A perceptually based onset detector for real-time and offline
audio parsing,” in Proceedings of the 2011 International Computer
Music Conference, ICMC 2011, Huddersfield, UK, July 31 - August
5, 2011. Michigan Publishing, 2011.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on April 16,2024 at 16:27:19 UTC from IEEE Xplore. Restrictions apply.

