
MusicoNet:
a social network for musicians based on the

Internet of Musical Things and People paradigm
Luca Turchet

Dept. Information Engineering
and Computer Science

University of Trento
Trento, Italy

luca.turchet@unitn.it

Jacopo Tomelleri
Dept. Information Engineering

and Computer Science
University of Trento

Trento, Italy
jacopo.tomelleri@studenti.unitn.it

Alessandro Ruffo
Dept. Information Engineering

and Computer Science
University of Trento

Trento, Italy
alessandro.ruffo@studenti.unitn.it

Abstract—To date, there are a number of online social net-
works dedicated to musicians. However, these do not truly lever-
age and capitalize on the musical diversity, i.e., the variability
that exists across musicians, their instruments, musical activities
and social relations. For instance, existing social networks are
not designed to search and find for musicians with specific
characteristics related to their profile and, above all, the actual
particuliarities of their playing style. More importantly, their
integration with the Internet of Musical Things (IoMusT) has
been largely overlooked thus far. To bridge these gaps, in
this paper we propose MusicoNet, a social network for mu-
sicians based on IoMusT technologies. The network leverages
Semantic Web methods and is made accessible through an
app for smartphones and tablet devices, which can wirelessly
interact with smart musical instruments (or, through a laptop,
with conventional instruments). MusicoNet was not conceived
to exchange topic-oriented communication through textual and
photographic posts as it occurs in popular social networks, but to
support the search for and connectivity among musicians having
given diversity factors. Such a search is not simply based on
sole textual queries as it occurs in conventional social networks,
but also on content-based queries which can be performed via
musical instruments. We describe the technical implementation of
MusicoNet, the IoMusT ecosystem it enables, and a preliminary
technical validation. We then discuss the lessons learned and
future avenues for the proposed technology, which represents
the first instance of the recently proposed Internet of Musical
Things and People paradigm.

Index Terms—Online Social Networks, Semantic Web, Internet
of Musical Things, Internet of Musical Things and People, Music
Information Retrieval, Digital Ecosystems.

I. INTRODUCTION

The Internet of Musical Things (IoMusT) relates to a vision
that extends the Internet of Things (IoT) paradigm to the
musical domain [1]. In such a vision, a set of physical
objects dedicated to musical purposes (Musical Things) are
interconnected via a networking infrastructure. Such objects
can take the form of a smart device used to generate, control
or track responses to musical content. These include smart
musical instrument [2], which are self-contained instruments
embedding the ability of processing music-related information
and communicating wirelessly with external devices. Another

example of Musical Things is represented by devices com-
posing the hardware part of a Networked Music Performance
(NMP) system. NMP systems aim at enabling geographically
displaced musicians to play together over a wireless or wired
network [3], [4].

Among the envisioned capabilities of Musical Things are
those of being context-aware and proactive. These features
are common in IoT devices, and usually are achieved by
leveraging methods from the fields of Semantic Web (e.g.,
ontologies, automatic reasoning) and Recommender Systems.
The capability of IoT devices (but also social networks) of
being aware of environments or situations around their users
enables the creation of networked services that can respond
proactively based on such awareness. Machine learning meth-
ods are typically used to mine patterns from users’ longitudinal
data, which allows to make predictions about users’ likely next
steps and provide recommendations. Whereas the concepts
of context-awareness and proactivity have been investigated
extensively in computer science and IoT disciplines [5], they
have been overlooked by music technology research, espe-
cially that related to music making. Thus far, the application
of such concepts to the musical domain has been limited to
the development of recommender systems for music listening
[6], being this research fostered by big corporations dealing
with music streaming (e.g., Spotify).

The interconnection of Musical Things may lead to the
formation of IoMusT ecosystems that enable multidirectional
communication between musical stakeholders as well as
among them and musical resources or devices. In more de-
tail, digital ecosystems form around some given technologies
and communities of users utilizing them [7]–[9]. This holds
true also for musical ecosystems [10]–[12]. An example is
represented by online music repositories, such as Spotify or
Deezer, which are based on music recommendation systems
[13], [14]. However, communication in a streaming service
is not bidirectional, as the user does not connect directly with
artists or record labels. Another example of digital ecosystems
is represented by online social networks. These enable the

20
24

 IE
EE

 5
th

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
th

e
In

te
rn

et
 o

f S
ou

nd
s (

IS
2)

 |
 9

79
-8

-3
50

3-
66

52
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
26

27
82

.2
02

4.
10

70
41

17

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

formation of global connections that are related to a specific
domain or based on a common need among the participants.
To date, there are a number of social networks dedicated to
musicians, such as Vampr1, or services that allow musicians
to share their productions and users to follow artists and
commenting on posts (similar to social networks), such as
SoundCloud2. However, these are not designed to search
and find for musicians with specific (and deeply detailed)
characteristics related to their profile and, above all, the actual
particuliarities of their playing style (based on audio features).
More importantly, their integration with the IoMusT paradigm
has been largely overlooked thus far.

To bridge these gaps, in this paper we propose MusicoNet,
a social network for musicians based on the Internet of
Musical Things paradigm. The network leverages Semantic
Web methods and is made accessible through an app for
smartphones and tablet devices, which can wirelessly interact
with smart musical instruments (or, through a laptop, with
conventional instruments). MusicoNet was not conceived to
exchange topic-oriented communication through textual and
photographic posts as it occurs in popular social networks such
as Facebook, but to support the search for and connectivity
among musicians having given diversity factors, such as age,
musical expertise, musical instrument(s) and genre(s) played.
Such a search is not simply based on sole textual queries as
it occurs in conventional social network, but also on content-
based queries which can be performed via musical instruments
(especially smart ones). Moreover, MusicoNet was devised to
support musicians in finding venues where to conduct their
musical activities as well as musical events to engage with.

The work reported in this paper falls in the remits of the
Internet of Musical Things and People (IoMusTP) paradigm
recently proposed in [15], and represents one of the first
concrete technical steps towards the realization of such a
vision. The move from the IoMusT to the IoMusTP is a move
from a network of musical devices to a network of musical
stakeholders, whose interactions with musical resources as
well as other stakeholders are empowered by devices. In the
IoMusTP, technology is not only aware of the users and
their surrounding context, but is also compliant to ethical
and sustainable principles that will make it possible more
inclusive, personalized, and socially acceptable experiences for
musical stakeholders. With MusicoNet we aim at introducing
a technology that can empower richer and more inclusive
social interactions through IoMusT ecosystems capitalizing on
musical diversity. By musical diversity we refer to the vari-
ability that exists across musicians, their instruments, musical
activities and social relations. Ultimately, MusicoNet focuses
on connecting musicians for addressing their needs, such as
finding the right musician(s) for a given task.

In the following sections, we describe the technical imple-
mentation of MusicoNet, the IoMusT ecosystem it enables,
and a preliminary technical validation. We then discuss the

1https://vampr.me/
2https://soundcloud.com/

lessons learned and future avenues for the proposed technol-
ogy. The actual evaluation with users is a matter that will be
addressed in a future research endeavor involving longitudinal
studies.

II. DESIGN

MusicoNet was designed to enable users to search for
musicians via a smartphone application based on a classic
client-server architecture. The app was conceived to support
two types of queries: i) textual-based, and ii) content-based.
In the former the user can perform a search by selecting some
options from the app’s interface, in the latter the user records a
small excerpt from which audio features are extracted and then
matched with those associated to music loaded in the profile
of each user in the database. The app was thus designed to
be capable of interacting with musical instruments, smart or
conventional. Smart musical instruments can directly record
an audio file and transmit it to the cloud where the audio
file analysis is performed. Alternatively, a musician can use
conventional instruments, but in tandem with a laptop and
audio equipment to record and transmit the file.

Once a musician with desired characteristics is found, the
user can interact with him/her (if online) by two styles of
interaction: i) via a chat, ii) via a NMP system.

A schematic representation of the resulting IoMusT ecosys-
tem is illustrated in Figure 1. Section III provides technical
details about the implementation of MusicoNet.

III. IMPLEMENTATION

MusicoNet has been implemented following best practices
in the fields of Semantic Web, programming and web design.
Hereinafter we detail the main technological components
underlying the proposed social network in its first version
(v. 1.0.0), which are illustrated in Fig. 2. The code is made
available open source3.

A. The Musician’s Context Ontology

At the heart of MusicoNet is the “Musician’s Context
Ontology” (MUSICO). The ontology and its documentation is
publically available4. MUSICO was devised to represent the
knowledge related to musicians and musical activities. Such an
ontology was created to facilitate the development of context-
aware musical applications. It enables the creation of profiles
of musicians based on a large variety of diversity factors
(demographics, role, level of musical expertise, instrument(s)
and genre(s) played, etc.), as well as on the representation of
their social relationships and participation to events.

MUSICO leverages various ontologies previously devel-
oped, including the Music Ontology [16], the Friend of a
Friend Ontology [17], the Time and Timeline Ontologies [18],
the Emotions Ontology [19], the Internet of Musical Things
Ontology [20], the Smart Musical Instruments Ontology [21],
and the Studio Ontology [22].

3https://github.com/CIMIL/MusicoNet
4https://w3id.org/musico#

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A schematic representation of the developed IoMusT ecosystem.

Fig. 2. A diagram of the MusicoNet’s components.

B. Backend
The MusicoNet’s backend structure is divided into three

main macro components:
• Identity and Access Manager: third-party software used

to manage user authentication and authorisation;
• Databases: three separate databases that manage all the

data in the system;
• Application: the main structure of the system, developed

according to a microservices architecture.

Identity and Access Manager
An Identity and Access Manager (IAM) is an essential tool

for controlling user access to a system and managing their
identities and privileges. Depending on the implementation,
an IAM allows different types of users to access specific
parts of the system. An IAM also manages the login process,
providing services such as Single Sign-On and Multi-Factor
Authentication.

For the implementation of MusicoNet, Keycloak5 was cho-

5https://www.keycloak.org/

sen as the IAM. Keycloak is an open source project developed
by the Cloud Native Computing Foundation that provides a
simple way to manage and configure login methods and user
permissions in the backend microservices. Users register and
then log into the system via Keycloak, with the ability to use
external social network accounts, giving them access to all
components of the system for which they are authorized.

Communication between the user and Keycloak is mediated
by the Gateway API (see Section III-B), which filters each re-
quest it receives and redirects it to the appropriate component.
The Gateway API is then be responsible for receiving any call
external to the application and, in the case of unauthorized
users, redirects the call to Keycloak for login.

To ensure a secure login system, the OAuth 2.0 with PKCE
(Proof Key for Code Exchange) authentication flow [23] has
been implemented using Keycloak. This authentication flow
adds an extra layer of security to the OAuth 2.0 standard,
which is particularly effective for mobile or client-side appli-
cations. PKCE prevents the interception of credentials when
exchanging messages with the backend, ensuring that only
the application that generated the credential can use it, thus
reducing the risk of man-in-the-middle and replay attacks.

Databases
Three different databases were utilized: i) a triple-store

database built around the MUSICO ontology (see Section
III-A), ii) a relational database, and iii) a NoSQL database.
This triple database system was created to reduce the workload
on the triple-store database as much as possible.

The triple store database plays a central role in the whole
system. It stores all the relationships describing an artist’s
musical context, details of musical events, information about
musical genres and other relevant data. Ad-hoc written infer-
ence rules are also added to the database to automatically infer
data such as users who might know each other or events that
might be of interest to them.

The relational database maintains the data related to the
social aspect of the application, i.e., messages, account set-
tings, user groups and friend request management. In addition,
the relational database also contains information related to the
user’s profile, which is not relevant to the definition of the
user’s musical context. In some cases, the relational database
is also used to more quickly obtain the IDs of the entities to
be searched for in the graph database.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

The NoSQL database plays a dual role, storing the media
uploaded by users and assisting the triple-store database in
storing concepts. The media uploaded by users is broken down
into smaller chunks and then reconstructed as needed, all
of which is handled automatically by the database chosen
for implementation. The support offered to the triple-store
database is to contain complete data on unused concepts. A
graph that is as light as possible is essential to ensure speed
in the execution of queries and inferences. To achieve this, it
was decided to load the data of concepts useful for describing
the musical context of an artist only when they are actually
used, taking them from the non-relational database.

Ontotext GraphDB, MySQL, MongoDB were chosen for
the triple-store, relational, and NoSQL databases respectively.
Ontotext GraphDB was chosen as the triple-store database
because of its performance, full compatibility with RDF4J
and, most importantly, the ability to add custom inference
rules. The main reason for choosing MySQL and MongoDB
was the ease of integration with the Spring framework6, which
was used to implement the microservice architecture. For these
databases, Spring provides quick configuration for connection
and various tools for development. In addition, MongoDB with
the GridFS specification7 also allows for storing media files.

Application

The microservice architecture represents an approach to
application development based on the division of functionality
into independent services communicating with each other
via APIs. This development method allows for the creation
of heterogeneous components with different languages or
frameworks, thus enabling the use of the most appropriate
technologies to create specific functionalities.

In our context, the decision was made to use this design
pattern to mainly guarantee three characteristics considered
essential for a social network:

• Scalability: The system can adapt to changes in the
number of users and the resulting workload. This enables
the system to maintain high performance and availability
by replicating its services;

• Maintainability: The assignment of each backend task
to a specific microservice facilitates the identification and
resolution of any issues that may arise. This segregation
of responsibilities enables the debugging, updating and
management of the system;

• Modularity: The microservice architecture permits the
incorporation of new functionalities through the creation
of new microservices without disrupting the existing
ones.

Furthermore, the implementation of a microservices archi-
tecture facilitates the continuous deployment and continuous
integration processes, enhancing the efficiency of the develop-
ment cycle and the quality of the released software.

6https://spring.io/
7ttps://www.mongodb.com/docs/manual/core/gridfs/

The microservice architecture was implemented via the
Spring framework. In particular, Spring Boot was used to cre-
ate microservices, complete with the necessary dependencies.
Each service that exposes APIs will have Spring Security8 and
Spring OAuth2 Resource Server as dependencies, so that the
privileges of the user making the request can be controlled.

At the time of this writing, the system consists of six
microservices. Communication between these takes place by
exchanging messages via Apache Kafka9, a distributed stream-
ing platform that enables the publication, subscription, storage
and processing of streams of records in real-time. Due to its
ability to handle large volumes of data with low latency, Kafka
guarantees reliable and efficient communication between mi-
croservices, allowing the system to be scalable and responsive.

Microservices can be divided into three categories: i) In-
terface management (i.e., Api Gateway and Eureka service),
ii) Analysis and Recommendation (i.e., Essentia service and
Analysis and Recommendation service), and iii) User data
access API (i.e., User service and Database service). These
are detailed hereinafter.

Interface Management. This pair of microservices has two
fundamental roles: first, to identify microservices within the
network via the Eureka Service; second, to manage commu-
nication with the external world via the Gateway API. The
Eureka Service is responsible for monitoring and maintaining
a record of the IP addresses of other microservices. To fulfil
this task, Eureka creates a server to which the microservices
connect. Consequently, Eureka is able to store and commu-
nicate the addresses of other services to the API Gateway,
thereby facilitating the discovery and communication between
microservices. In contrast, the API Gateway acts as a filter for
requests from outside sources. Upon receipt of a request from
a non-authenticated user, the PKCE authentication process is
initiated, resulting in the exchange of messages with Keycloak.
In the event that the user is already authenticated, the API
Gateway, via the Eureka Service, forwards the received re-
quests to the appropriate microservice.

Analysis and Recommendation. These microservices are
responsible for analysing audio files and returning the results
to the user. First, the Essentia service exposes an API through
which users can upload audio files. The name of the service
is derived from the Essentia library [24] used to create the
service, an open source project dedicated to audio-based music
information retrieval. Unlike the other microservices, since
Essentia is a library available for Python, the microservice
was also written in that language. Using this library, the
service extracts details of musical characteristics (such as
key, tempo, mood, or danceability) from the music piece in
input. The results are then passed to both the Analysis and
Recommendation Service and the Database Service.

The Analysis and Recommendation Service connects to
the client via websocket and sends messages to it using
the STOMP protocol10. Two communication channels, called

8https://spring.io/projects/spring-security
9https://kafka.apache.org/
10https://stomp.github.io/

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

“queues”, are established with the user. As results are received,
they are returned to the user in the assigned queue.

In the database service, the results of the audio analysis are
used to query the triple-store database. Since each user can
store tracks that represent them in their profile, the service
searches the database for users whose tracks match the search
results. The resulting profiles are passed to the Analysis and
Recommendation Service and returned to the user in a second
dedicated queue.

In more detail, this service implements the user recommen-
dation system. The recommendation is based on both the anal-
ysis of the audio file used for the query-by-content and on the
contextual information provided by textual input. Concerning
the recommendation based on the audio file analysis, this was
inspired by our previous study reported in [25] which used a
set of similarity metrics. Specifically, we used these metrics:

• BPM: the tracks whose BPM falls within 5% of the
requested BPM are withheld, with preference given to
the ones that are closest to the requested value;

• Mood: tracks with exactly the same mood as the re-
quested one are selected;

• Key: tracks with exactly the same key as the requested
one are selected;

• Danceability: the tracks whose danceability falls within
5% of the requested danceability are withheld, with pref-
erence given to the ones that are closest to the requested
value;

• Tuning: tracks with exactly the same tuning (e.g., A = 432
Hz or A = 440 Hz) as the requested one are selected;

The final result then consists of the intersection of the these
criteria, when these are selected by the user in his/her search
preference. The system can return up to 10 tracks that meet the
requested search criteria, provided enough tracks are available.
These tracks are listed in descending order based on how well
they match the criteria.

User data access API. The User service exposes the main
APIs for retrieving, modifying or searching for data within
the system. All the standard operations of searching for users
or events, creating or modifying one’s profile are provided by
this service. This component also takes care of storing and
retrieving the user’s media from the NoSQL database. The
User service relies on the Database service to store the data in
the remaining databases. In general, a service dedicated solely
to database communication is not a best practice. However,
since in our case is necessary to query two different databases
at the same time and reconstruct the data to merge them into
a single object, creating a dedicated service proved to be the
best choice.

To work with both databases, a system was created that
could represent an entity present in both databases in a single
class. When the service is started, the MUSICO ontology and
the ontologies imported by it are loaded into memory. The
RDF4J library11 is used to parse the ontology files and create a
model containing all of MUSICO’s relationships and concepts.

11ttps://github.com/eclipse-rdf4j/rdf4j

The model is made statically available to all classes in the
microservice.

The Spring Data JPA library12 was used to create classes
annotated with the Entity tag, so that Spring would recognize
them as tables in the relational database. Next, the OntEntity
interface and OntEntityField annotation were created. The
interface is implemented by the classes that represent entities
in both the relational and triple-store databases, such as users.
Similarly, the OntEntityField annotation is used to mark table
fields present in both databases, specifying the predicate and
relationship type in the graph.

Thanks to the combination of these two libraries and the
Java Reflection feature13, it was possible to create an automatic
query generation system based on the instantiated object. By
calling the method of the interface, it is possible to obtain the
body of a query containing the data of the instantiated object
or variables if the data is not available. The resulting query is
then enriched with the operation to be performed (SELECT,
INSERT, etc.) and sent via the endpoint to execute SPARQL
queries against the triple-store database. The results are then
combined with the data in the relational database, if necessary,
and returned to the user service.

C. Frontend

For the development of the front-end we chose Expo, an
open-source platform for making universal native apps for
Android, iOS, and the web, for the following reasons:

• Cross-platform development;
• Streamlined workflows thanks to Expo toolset;
• Large active community and ecosystem;
• Native performance.

Key Libraries

Hereinafter, we list some of the key libraries that were used
to enhance functionality and reduce development time:

• NativeWind: A utility-first CSS framework that uses
Tailwind CSS as scripting language to create a universal
style system for React Native also improving Developer
UX and code maintainability;

• Expo Router: A file-system-based routing solution that
allows to manage navigation between screens in the app,
allowing users to move seamlessly between different parts
of the app’s user interface (UI);

• Expo Auth Session: Enables web browser-based authen-
tication, like OAuth 2.0 in your app by utilizing Web-
Browser and Crypto;

• Expo Document Picker: Allows the user access to the
system’s UI for selecting documents from the available
providers on device;

• React Native Async Storage: Provides an asynchronous,
unencrypted, persistent, key-value storage system for
React Native;

12https://spring.io/projects/spring-data-jpa
13https://www.oracle.com/technical-resources/articles/java/javareflection.

html

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. User flow chart.

• React Native Elements: Cross-platform UI Toolkit for Re-
act Native providing pre-built, ready-to-use components
that are fully configurable and strictly follow manufac-
turers’ guidelines;

• Expo OSC: Allows the app to exchange messages and
data with smart musical instruments through the Open
Sound Control (OSC) protocol.

All these libraries are fundamental in forming the core
of our application’s front end, each of which was selected
according to the unique needs of a musician-focused social
network. Their combination makes it possible to build a solid,
fast, and functional platform based on the users’ requests.

User Flow

Figure 3 depicts a user flow chart that shows the general
functionality of the app. The chart explains that the user
begins on the landing page, which then redirects them to
the Keyclock page loaded inside the in-app browser. Here,
the user can choose to either login (see Fig. 4) or sign up
(see Fig. 5). Signing up leads to the signup process, which
then redirects the user to the homepage. Conversely, the login
option immediately redirects the user to the homepage.

The homepage displays a list of suggested musicians (see
Fig. 6). From there, the user is able to navigate to other
sections of the application, including events, chats, profile, and
music insights. In the music insights page, the user can either
communicate to smart instruments through OSC messages or
directly upload an audio file. The results of the audio analysis
is displayed on the same page. Notably, each user profile may
include the username identifying himself/herself on a NMP
platform, so that the connection among users of such platforms
is facilitated.

Fig. 6. App navigation.

IV. ECOSYSTEM DESCRIPTION

Thanks to MusicoNet it is possible to create an IoMusT
ecosystem composed of musicians and devices. We developed
an ecosystem that leverage smart musical instruments as de-
vices and preliminary tested its functioning. The ecosystem’s
components are detailed hereinafter.

Smart musical instruments. We used two prototypes of
the smart instruments: the smart guitar described in [25] and
the smart mandolin reported in [26]. Both of them are based
on the Bela embedded system enhanced with a Wi-Fi dongle.
The instrument enables to record a .wav audio file upon the
wireless reception of start/stop messages delivered via the OSC
protocol, and to submit it directly to the cloud server hosting
the backend of MusicoNet. We opted to perform the analysis
of the audio recording on the cloud rather than the embedded

Fig. 4. Landing and login page.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Sign up process.

system because our previous measurements reported in [25]
showed that this was much faster.

Smartphones. The MusicoNet app runs over a smartphone,
and enables the user to wireless interact with the smart musical
instrument to start/stop the recording, as well as to refine the
search via textual queries and ultimately to connect to the
desired musician (both via chat and via the NMP system).

NMP system. We used the Elk LIVE NMP system by Elk
Audio [27]. Among the various NMP systems available as
experimental prototype or commercial product (e.g., [28], [29],
[30], [31], [32]), we selected Elk Live because its graphical
user interfaces enables users to easily establish connections
among themselves by simply adding a username.

V. TECHNICAL VALIDATION

The app has undergone extensive technical validation
through numerous tests, demonstrating its ability to perform
searches within a triplestore containing 1.000 (fake) user
profiles. Specifically, the technical validation phase of the
system was carried out in three separate iterations.

The first iteration, conducted in parallel with the develop-
ment phase, used Postman 14 to test each API as it was created.
This software was used to generate requests to reproduce
the conditions necessary to obtain all the implemented error
codes. The tested conditions included: authentication and
permissions, method and format of the request to the endpoint,
connection verification and message exchange via websockets
and file upload limits.

In the second iteration, automated tests were implemented
for each microservice. These tests verified that the components
of the service worked correctly, independently of the other
parts of the backend. For instance, in the case of the Database
service, the database connections and their data were simulated
to ensure that the internal functions manipulated the data
correctly before returning it to the user. Subsequently, the
integration of the microservices was verified by checking the

14https://www.postman.com/

connection to the Eureka server, the message exchange with
Apache Kafka, and the interfacing with Keycloak and the
databases. Lastly, the front-end of the application was tested
to ensure that the mobile application could correctly handle
any API request errors and adapt to different scenarios.

The third iteration involved conducting a stress test on
the system. To achieve this, 1000 profiles of fictitious users
were inserted into the databases. The system’s behavior, with
particular focus on the triple-store database, was then observed
during simulated user interactions with the application.

Additionally, a preliminary user study was conducted with
two professional musicians using smart guitar and smart
mandolin prototypes. For this evaluation, we created 50 (real)
profiles of musicians who had participated in previous studies
related to collecting music excerpts for an individual instru-
ment dataset (see e.g., [33]). The results clearly showed that
the musicians greatly appreciated the novelty and concept
of the proposed system and were satisfied with the service
provided while using it.

A more extensive evaluation campaign is currently under-
way, along with the development of a companion website to
make the social network accessible to musicians using con-
ventional musical instruments. However, additional equipment,
such as a soundcard and a laptop, will be required in this case.

VI. DISCUSSION AND CONCLUSIONS

This paper described the technical implementation of Musi-
coNet, a novel social network based on the IoMusT paradigm,
which was conceived to support musicians in finding other
musicians with given characteristics. In part, our work parallels
other previous efforts, which focused on the integration of
social networks and the IoT [34], [35].

A novelty of the MusicoNet lies in its ability of supporting
not just textual queries, but also content-based queries that
can be performed by means of smart musical instruments. The
proposed system represents a novelty in the landscape of social
networks and platforms for musical activities, as it focuses
on recommending musicians rather than music, thus shifting
the focus from the listener to the player. Such a shift from
music retrieval to musicians retrieval represents one of the
first steps towards the accomplishment of the recent IoMusTP
vision proposed in [15].

As with all other social networks, also MusicoNet users
are exposed to a set of risks [36], such as privacy violations,
identity theft, or unfair recommendations. Ethical concerns
such as these are matter of debate in various music technology
communities (e.g., NIME [37], Music Recommender Systems
[38], [39]) and have recently made their inroads in the IoMusT
community as well (see e.g., [40]). It is the precise goal of the
authors to address satisfactorily any potential ethical concerns,
so that MusicoNet is properly designed in the full interest of
its beneficiaries.

Several avenues are possible for future work. The authors
plan to continue the development of MusicoNet, with a long-
term goal of releasing the app for public use. Before this
is possible, MusicoNet needs some core functionality added

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

to it and the interface needs to be modified to be more
accessible to musicians. First of all, before widespread release,
the application needs some more formal privacy protection in
place. These and other aspects will be fine-tuned by directly
involving the end-users in the design process, leveraging
participatory design methodologies [41], [42]. Furthermore,
we plan to conduct an extensive evaluation campaign with
several musicians in order to assess the musicians’ experiences
in interacting with it. The authors believe that MusicoNet
has strong potential to be an empowering, musician-friendly
social network, and we look forward to continuing with future
releases.

REFERENCES

[1] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet, “Internet
of Musical Things: Vision and Challenges,” IEEE Access, vol. 6, pp.
61 994–62 017, 2018.

[2] L. Turchet, “Smart Musical Instruments: vision, design principles, and
future directions,” IEEE Access, vol. 7, pp. 8944–8963, 2019.

[3] L. Gabrielli and S. Squartini, Wireless Networked Music Performance.
Springer, 2016.

[4] C. Rottondi, C. Chafe, C. Allocchio, and A. Sarti, “An overview on
networked music performance technologies,” IEEE Access, vol. 4, pp.
8823–8843, 2016.

[5] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE communi-
cations surveys & tutorials, vol. 16, no. 1, pp. 414–454, 2013.

[6] P. Knees, M. Schedl, B. Ferwerda, and A. Laplante, “User awareness in
music recommender systems,” Personalized Human-Computer Interac-
tion, p. 223, 2019.

[7] H. Boley and E. Chang, “Digital ecosystems: Principles and semantics,”
in Inaugural IEEE International Conference on Digital Ecosystems and
Technologies, 2007, pp. 398–403.

[8] G. Briscoe, S. Sadedin, and P. De Wilde, “Digital ecosystems:
Ecosystem-oriented architectures,” Natural Computing, vol. 10, pp.
1143–1194, 2011.

[9] O. Mazhelis, E. Luoma, and H. Warma, “Defining an internet-of-things
ecosystem,” in Internet of Things, Smart Spaces, and Next Generation
Networking. Springer, 2012, pp. 1–14.

[10] A. Di Scipio, “‘sound is the interface’: from interactive to ecosystemic
signal processing,” Organised Sound, vol. 8, no. 3, pp. 269–277, 2003.

[11] S. Waters, “Performance ecosystems: Ecological approaches to musical
interaction,” EMS: Electroacoustic Music Studies Network, pp. 1–20,
2007.

[12] V. Lazzarini, D. Keller, and M. S. Pimenta, “Prototyping of ubiqui-
tous music ecosystems,” Journal of Cases on Information Technology,
vol. 17, no. 4, pp. 73–85, 2015.

[13] M. Schedl, “Deep learning in music recommendation systems,” Frontiers
in Applied Mathematics and Statistics, vol. 5, p. 457883, 2019.

[14] M. Velankar and P. Kulkarni, “Music recommendation systems:
overview and challenges,” Advances in Speech and Music Technology:
Computational Aspects and Applications, pp. 51–69, 2022.

[15] L. Turchet, “Entangled Internet of Musical Things and People: A more-
than-human design framework for networked musical ecosystems,” IEEE
Transactions on Technology and Society, 2024.

[16] Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson, “The music
ontology,” in Proceedings of International Society for Music Information
Retrieval Conference, 2007.

[17] L. Ding, L. Zhou, T. Finin, and A. Joshi, “How the semantic web is
being used: An analysis of FOAF documents,” in Proceedings of the 38th
Annual Hawaii International Conference on System Sciences. IEEE,
2005, pp. 1–10.

[18] J. Hobbs and F. Pan, “An ontology of time for the semantic web,” ACM
Transactions on Asian Language Information Processing, vol. 3, no. 1,
pp. 66–85, 2004.

[19] J. Hastings, W. Ceusters, B. Smith, and K. Mulligan, “The emotion
ontology: enabling interdisciplinary research in the affective sciences,” in
International and Interdisciplinary Conference on Modeling and Using
Context. Springer, 2011, pp. 119–123.

[20] L. Turchet, F. Antoniazzi, F. Viola, F. Giunchiglia, and G. Fazekas, “The
internet of musical things ontology,” Journal of Web Semantics, vol. 60,
p. 100548, 2020.

[21] L. Turchet, P. Bouquet, A. Molinari, and G. Fazekas, “The smart musical
instruments ontology,” Journal of Web Semantics, p. 100687, 2022.

[22] G. Fazekas and M. Sandler, “The Studio Ontology Framework,” in
Proceedings of the International Society for Music Information Retrieval
conference, 2011, pp. 24–28.

[23] N. Sakimura, J. Bradley, and N. Agarwal, “Proof key for code exchange
by oauth public clients,” Tech. Rep., 2015, (No. rfc7636).

[24] D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati, P. Herrera Boyer,
O. Mayor, G. Roma Trepat, J. Salamon, J. Zapata González, and
X. Serra, “Essentia: An audio analysis library for music information
retrieval,” in Proceedings of the International Society for Music Infor-
mation Retrieval Conference, 2013, pp. 493–498.

[25] L. Turchet, J. Pauwels, C. Fischione, and G. Fazekas, “Cloud-smart
musical instrument interactions: Querying a large music collection with
a smart guitar,” ACM Transactions on the Internet of Things, vol. 1,
no. 3, pp. 1–29, 2020.

[26] L. Turchet, “Smart Mandolin: autobiographical design, implementation,
use cases, and lessons learned,” in Proceedings of Audio Mostly Con-
ference, 2018, pp. 13:1–13:7.

[27] L. Turchet and C. Fischione, “Elk Audio OS: an open source operating
system for the Internet of Musical Things,” ACM Transactions on the
Internet of Things, vol. 2, no. 2, pp. 1–18, 2021.

[28] K. Tsioutas, G. Xylomenos, and I. Doumanis, “Aretousa: A competitive
audio streaming software for network music performance,” in Audio
Engineering Society Convention 146. Audio Engineering Society, 2019.

[29] C. Werner and R. Kraneis, “UNISON: A Novel System for Ultra-Low
Latency Audio Streaming Over the Internet,” in 2021 IEEE 18th Annual
Consumer Communications Networking Conference, 2021, pp. 1–4.

[30] A. Carôt, C. Hoene, H. Busse, and C. Kuhr, “Results of the fast-music
project—five contributions to the domain of distributed music,” IEEE
Access, vol. 8, pp. 47 925–47 951, 2020.

[31] J. Cáceres and C. Chafe, “Jacktrip: Under the hood of an engine for
network audio,” Journal of New Music Research, vol. 39, no. 3, pp.
183–187, 2010.

[32] C. Drioli, C. Allocchio, and N. Buso, “Networked performances and
natural interaction via lola: Low latency high quality a/v streaming
system,” in International Conference on Information Technologies for
Performing Arts, Media Access, and Entertainment. Springer, 2013,
pp. 240–250.

[33] L. Turchet and J. Pauwels, “Music emotion recognition: intention of
composers-performers versus perception of musicians, non-musicians,
and listening machines,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 30, pp. 305–316, 2022.

[34] M. Kranz, L. Roalter, and F. Michahelles, “Things that twitter: social
networks and the internet of things,” in What can the Internet of Things
do for the Citizen (CIoT) workshop at the eighth international conference
on pervasive computing (Pervasive 2010), 2010, pp. 1–10.

[35] J. I. R. Molano, J. M. C. Lovelle, C. E. Montenegro, J. J. R. Granados,
and R. G. Crespo, “Metamodel for integration of internet of things, social
networks, the cloud and industry 4.0,” Journal of ambient intelligence
and humanized computing, vol. 9, pp. 709–723, 2018.

[36] M. Fire, R. Goldschmidt, and Y. Elovici, “Online social networks: threats
and solutions,” IEEE Communications Surveys & Tutorials, vol. 16,
no. 4, pp. 2019–2036, 2014.

[37] F. Morreale, S. A. Bin, A. P. McPherson, P. Stapleton, and M. Wanderley,
“A NIME of the times: developing an outward-looking political agenda
for this community,” in International Conference on New Interfaces for
Musical Expression 2020, 2020, pp. 191–197.

[38] K. Dinnissen and C. Bauer, “Amplifying artists’ voices: Item provider
perspectives on influence and fairness of music streaming platforms,” in
Proceedings of the 31st ACM Conference on User Modeling, Adaptation
and Personalization, 2023, pp. 238–249.

[39] L. Porcaro, E. Gómez, and C. Castillo, “Assessing the impact of music
recommendation diversity on listeners: A longitudinal study,” ACM
Transactions on Recommender Systems, vol. 2, no. 1, pp. 1–47, 2024.

[40] J. Brusseau and L. Turchet, “Ethics Framework for the Internet Musical
Things,” IEEE Transactions on Technology and Society, 2024.

[41] L. J. Bannon and P. Ehn, “Design: design matters in participatory
design,” in Routledge international handbook of participatory design.
Routledge, 2012, pp. 37–63.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

[42] J. Sullivan, M. M. Wanderley, and C. Guastavino, “From fiction to func-
tion: Imagining new instruments through design workshops,” Computer
Music Journal, vol. 46, no. 3, pp. 26–47, 2022.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on October 08,2024 at 20:15:12 UTC from IEEE Xplore. Restrictions apply.

