
Image-based Approaches for Automating GUI
Testing of Interactive Web-based Applications

Federico Macchi
University of Trento

Trento (TN), Italy

federico.macchi-1@studenti.unitn.it

Pierpaolo Rosin, Juan Marcos Mervi
Leonardo Company, Electronics Division

Ronchi dei Legionari (GO), Italy

pierpaolo.rosin, juanmarcos.mervi@leonardocompany.com

Luca Turchet
University of Trento

Trento (TN), Italy

luca.turchet@unitn.it

Abstract—Modern Graphical User Interface testing frame-
works automate the testing of web-based interfaces to ensure
the absence of functional and visual regressions. They employ
common strategies to tackle different testing use-cases. This
paper presents an analysis of these strategies, highlighting that
it is not possible to test some kinds of interactive interfaces
exhaustively. We propose a novel image-based framework that
combines current techniques with new ones. These leverage
Machine Learning and Computer Vision algorithms to analyze
screenshots of the interface and prove its correctness. Results
suggest that it suffices to automate the verification of interactive
interfaces that were not fully testable before. Automated tests,
developed as a benchmark, present almost no false-positives and
high accuracy.

I. INTRODUCTION

Nowadays, several millions of applications include a
Graphical User Interface (GUI). In 2012, already more than
60% of the software under development was equipped with
one [1] and it is reasonable to assume that this percentage
is higher today. Since their introduction, GUIs evolved and
increased in complexity along with the features of the software
and reached a point where, in some cases, they are the only
available method for the users to interact with or operate
the whole software. In this case, ensuring that they work
correctly is vital; functional and visual bugs can have serious
consequences and severely degrade the usability of the system
and the overall user experience.

In the field of Software Development, testing is defined as
a technical investigation to assess the quality of the software or
service tested and communicate it to the stakeholders [2], [3].
Testing approaches are divided into three groups; static, dy-
namic, and passive testing. In particular, dynamic testing is
when the software is executed against a set of input values (for
which the output is known), and its output is then compared
to what is expected [4], [5].

Tests are further classified into four levels: unit, integration,
system, and acceptance testing [3], [6], [7]. Unit testing is the
testing of individual procedures within programs [5]; every
method is tested independently from the others. Integration
testing is performed on more software components at once
and evaluates the interactions between them [8]. System
Testing is conducted on fully integrated systems to evaluate
its compliance with the specified requirements [5]. Finally,
Acceptance Testing verifies that the developed system satisfies
the stakeholders’ needs.

GUI’s testing is generally performed through Visual Test-
ing, a type of dynamic testing, defined in the literature as
a testing activity that verifies the presentation and functional
properties of graphical elements under different conditions [1].
Presentation properties are visible features of the elements,
such as color, shape, and dimensions; functional properties are
all those characteristics not directly tied to the visual appear-
ance of an element, such as its name, the supported actions,
and the type of feedback communicated to the users [1]. For
example, the presentation properties of a button that appears
on a web page are its position, color, and shape; its functional
properties are its name, unique id, and supported events.

This paper focuses on interactive web-based applications;
their GUI is accessible through web browsers, supports multi-
ple interaction methods, and its state can be altered automat-
ically by the underlying system, without any action from the
users. Elements present within these GUIs are rendered inside
canvas elements, which are HTML elements used to create
(and update) graphics at run-time [9].

There are currently many testing frameworks that address
the problem of visual testing of web-based applications; the
techniques they employ are similar and can be broadly divided
into three main categories:

1) image comparison,
2) automation with WebDriver,
3) automation controlling users’ input methods.

Image comparison is a technique used to discover visual
regressions between releases; tests automatically compare in-
terface screenshots of the new release with the previous one
and report any difference found. Developers manually review
the pairs and correct the issues if any.

This technique can catch subtle visual issues, that might be
difficult to see for humans, because they perform a pixel-by-
pixel comparison to determine if two images are equal or not.
Basic image comparison algorithms are simple to implement,
however, their scope of application is limited; interfaces with
dynamic data must always use the same data, which might
reduce the probability of catching a visual bug. Furthermore,
this method does not verify user interactions. An example of
a framework that uses this method is Percy.io [10].

The techniques belonging to the second category utilize
WebDriver, an open-source tool for automated testing of
web applications [11]; through WebDriver, developers can
control the browser and its behavior, locate and access the

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

elements present in the webpage, and inject custom JavaScript
code to programmatically invoke functions. Developers can
automatically verify all the functional properties of the web
page elements; for example, they can ensure that all the CSS
rules are applied, the text content is correct and, for interactive
elements, the feedback is appropriate. This technique can be
used to test atomic elements, but also asynchronous functions
and animations; modern frameworks usually present APIs that
allow developers to implement these verifications concisely.

However, techniques present in this category do not verify
conditions and requirements visually; they rely on inspecting
the HTML code to extract the information necessary for the
verification. For this reason, they cannot ensure the correctness
of the presentation properties nor can check the functional
properties of all those elements whose code is not directly
accessible, such as the ones based on the HTML canvas. An ex-
ample of a framework that uses this method is Cypress.io [12].

The last technique analyzed, which belongs to the third
category, uses Computer Vision algorithms to visually locate
elements on the interface instead of WebDriver; in practice
employs a similar approach of a human user, that scans the
web page until s/he finds the desired element. To perform this
search, a screenshot of the interface is saved (either in memory
or on disk) and analyzed. The most common algorithm used
to locate the element is Template Matching; given a template
image, it slides it on the screenshot of the interface pixel-by-
pixel until it finds a correspondence.

One of the frameworks that use this technique is
SikuliX [13], which interacts with the elements found by
controlling the users’ input methods. This approach allows de-
velopers to test both the presentation and functional properties
of elements since it does not rely on inspecting the code (which
might not be always accessible) but can still interact with them.
Furthermore, since it does not rely on WebDriver, SikuliX can
automate virtually any application, including non-web-based
ones.

Not having access to WebDriver, however, poses some
problems; firstly, to perform di automation SikuliX needs
exclusive control of the input methods and the screen of the
users that are thus unable to perform other tasks. Secondly,
it has been used successfully only on non-animated GUIs,
a type of interface where there are no moving graphical
components [14]; on animated GUIs, the method it uses to
locate elements might fail. Indeed, the localization algorithm
analyzes a still image of the interface; if in the meantime the
element changes its location, the coordinates reported by the
algorithm and the actual ones can be different.

From this analysis of the most used techniques, it emerged
that there are still some gaps in the capabilities of current
testing frameworks; some interactive interfaces cannot indeed
be exhaustively tested. To address this issue, we present
additional techniques that, combined with the current ones,
aim to fill those gaps and increase the number of interfaces
that can be tested.

II. TECHNOLOGY STACK

To show the efficacy of the techniques proposed and
provide concrete results in terms of testing time and accuracy,

this paper presents them integrated with Selenium [15], a
browser automation framework. In addition to Selenium, other
technologies used are:

• Java is used to implement the algorithms,

• JUnit 5 [16] as the test runner to run the tests,

• Chrome Driver [11] to control Google Chrome,

• Jenkins [17] as the CI/CD system.

These components have been selected due to their popu-
larity; according to the survey reported in [18], Selenium is
often considered the de-facto standard for testing web-based
software, and it is certainly the most popular; it also emerged
that it is typically used in combination with Java (50%). In
the Java ecosystem, JUnit is the most used test runner (75%).
Finally, Jenkins is employed by most of the developers as a
CI/CD system (72%).

Additionally, two well-established third-party libraries have
been employed to implement the Computer Vision and Ma-
chine Learning algorithms: these are OpenCV [19] and Tesser-
act OCR [20], both used with their Java bindings.

III. INTERFACE ANALYZED

The performance of the algorithms has been evaluated
through some benchmarks on the 2D Tactical Map of Oper-
ator Stations of Flight Simulators. In Flight Simulators, the
Operator Station interfaces instructors with the trainee (the
pilot) [21]; as it can be seen in many commercial prod-
ucts [22]–[25], it usually comprises a map (referred to as
Map or 2D Tactical Map from now on) and graphic pages,
used to monitor the simulation and alter the parameters of the
virtual environment or the simulated aircraft. The Map can
be controlled by the instructor and also updates itself in near
real-time to reflect changes in the simulation parameters and
visualize actions performed by the pilot.

In particular, the Map considered in this paper (shown in
Fig. 1) is produced by Leonardo Company Electronics Division
and is used in their Flight Simulators; it displays the position
of all simulation items, such as airports, tactical areas, and
entities. In this context, an entity describes a military or civil
unit present in the simulation and represented inside the Map;
every entity is represented through unique symbols that follow
precise military standards such as the APP-6A [26].

Fig. 1. Screenshot of the 2D Tactical Map analyzed

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 279 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

The Map offers to the instructors a quick overview of where
objectives and other elements are located and basic tools to
measure distances and control entities. Its core functionality is
the visualization of data, that allows:

• merging geographical data with synthetic information
to provide a very detailed geographical area represen-
tation,

• viewing simulation players as icons, providing related
tactical information, and applicable quick actions that
can be activated via keyboard shortcuts or more clicks;

• intuitively interacting with the system.

Its interface comprises multiple layers; the lowest one
contains the map tiles, that are created inside an HTML canvas
element. On top of it, all the entities are positioned in separate
layers. All the map layers can be activated or deactivated
by users with apposite toggles to show or hide additional
information. Above the map layers, menus, and draggable
widget bars are positioned; these contain tools that can be
used by instructors during the simulation. Some of these tools
allow instructors to track an entity (the Map follows an entity),
display its trajectory, and send commands to it.

Apart from specific tools designed to help instructors
during the exercises, general mapping tools are also available;
for example, the Map can be panned, zoomed in or out, or
at pre-defined resolutions, and it supports also markers and
drawings to annotate specific areas.

In general, during a simulation exercise, the interactions
instructors-map need to be quick and precise; instructors need
to check often the simulation status and verify the behavior
of the trainee and their feedback to planned and unplanned
malfunctions or weather conditions. Sometimes, they need to
impersonate an entity to show how a certain maneuver is
performed; in this case, they can control the simulation using
HOTAS (Hands-On Throttle And Stick) devices to pilot it.
In general, however, the Map is controlled only through its
Graphical User Interface with a mouse and a keyboard.

This interface has been chosen for the benchmarks because
it respects all the properties defined before; it is accessible
through a web-browser, it is interactive, and it updates itself
to reflect changes in the simulation state or user actions.
Furthermore, it is also animated; entities, for example, are
moving graphical components.

IV. ALGORITHMS AND USE-CASES

The techniques presented in this paper refer to three use-
cases:

1) Pattern Detection,
2) Template Detection,
3) Text Recognition.

All of them implement image processing strategies to
improve screenshots of the interface before performing the
verification. This processing usually simplifies the work of the
tests by eliminating irrelevant features and enhancing the ones
needed, and, in some cases, optimizes the computation time
by reducing the dimensions of the images.

A. Pattern Detection

The Pattern Detection use-case aims to identify patterns,
such as lines and shapes. These patterns are distinguishable
from other elements by their color, which is usually known
to developers. This use-case is utilized when it is necessary to
verify if something is being drawn on the Map; for example, if
the trajectory of an entity is displayed in the correct colors and
position (the trajectory color is the same color as the aircraft,
and starts from its tail). Because patterns are usually abstract
shapes, it is difficult to create a template that can be used
for template matching; furthermore, common Computer Vision
filters such as the Canny Filter or the Hough Transform (both
the Standard and the Probabilistic) are useful for isolating and
enhancing some shapes (for examples lines) but cannot be used
to detect if they are present or not in the image automatically.

The algorithm automates the visual verification process
by performing a pixel-by-pixel analysis on the screenshot.
Initially, the pattern color is isolated from the others applying
thresholding and masking techniques; for simpler cases, where
the color is unique and different from the others present in
the interface, the image is binarized. Colors different from the
pattern one are set to black (or white, or grey depending on
the starting color). In complex cases, where patterns might
appear in random locations of the Map, its color is isolated
using masking techniques such as the one proposed by D. J.
Hemanth and U. Kose [27], which uses the HSV color scheme
to isolate colors.

After the processing phase, through a linear scan of the im-
age from the top-left corner to the bottom-right, the algorithm
locates the first pixel of the pattern using its color information.
Once the first pixel is found, the linear scan is stopped; if the
shape of the pattern is known, the algorithm proceeds to select
the next pixel and verifying if its color is correct until the
whole pattern is found.

Listing 1 shows an example of how an horizontal straight
line is detected in Java.

When the shape depends on non-controllable variables
and is thus not known, the algorithm ensures that its pixels
are connected and that the location of the pattern is correct.
For example, to verify if the trajectory of an entity is being
correctly drawn on the Map, the algorithm checks that its
starting point is close to the tail of the entity, the trajectory is
continuous (there are no holes in it), and that the ending point
is reasonably far away from the starting one.

B. Template Detection

The Template Detection use-case aims to locate template
images inside the interface; a template image represents a
unique element of the interface and cannot have any variation
in color, shape, or dimensions. It is used when there is the
need to verify if an element appeared on the interface and
retrieve its location to interact with it. In the case of the Map,
it is mostly used to find map-related elements, such as markers
and entities.

The algorithm uses the Template Matching algorithm pro-
vided by Open CV [28] combined with the image processing
techniques described before. Template Matching is a robust
algorithm that has been studied and employed in a lot of

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 280 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

Listing 1 Horizontal straight line detection algorithm.

int[] findFirstPixel(BufferedImage img) {
int[] firstPixel = new int[2];
for (int i = 0; i < img.getWidth(); i

+= 1) {↪→

for (int j = 0; j < img.getHeight(); j
+= 1) {↪→

// If the color of the current
pixel is correct↪→

if (isSearchColor(img, i, j)) {
firstPixel[0] = i;
firstPixel[1] = j;
return firstPixel;

}
}
}
return null;

}

int CountPixels(BufferedImage img) {
// Get the location of the first pixel
int[] firstPixelLocation =

findFirstPixel(img);↪→

if (firstPixelLocation == null) {
return 0;

}
int count = 0;
int x = firstPixelLocation[0];
int y = firstPixelLocation[1];
while (x < img.getWidth()) {

// If the color of the current
pixel is correct↪→

if (isSearchColor(img, x, y)) {
count += 1;
x = x + 1;

} else {
return count;

}
}
return count;

}

different scenarios, with positive results for static images and
videos (see, for example, [29], [30], [31], [32]). The algorithm
compares the template image with the source image by sliding
it pixel-by-pixel; for each location, it calculates a score that
defines how “good” is the match, which is stored in a matrix.
Finally, using one of the available metrics it returns the location
of the best match.

The implementation provided by Open CV does not take
into account the cases when the template image has a trans-
parent background. In this case, the algorithm performs poorly
because when the template is positioned above the Map
the background will not be constituted of transparent pixels
anymore, but contains the terrain of the Map underneath; thus,
when calculating the similarity score, all the background pixels
will be different.

In general, the greater the background/foreground ratio is
the lower will be the resulting similarity score. The results of

the standard Template Matching algorithm show an average
score of 70.46%, which is too low to avoid false positives (for
example, SikuliX which uses this algorithm considers 70% as
the minimum admissible score [33]).

To address this issue, before applying the Template Match-
ing, the algorithm calculates and applies a mask, using a
similar technique described in [27]. The mask aims to remove
everything but the template from the screenshot to improve
the detection score by removing foreign elements (such as
the background pixels). The result is shown in Fig 2. It is
calculated with the following steps:

1) the screenshot is converted to the HSV color space,
2) using lower and upper bounds provided by the de-

veloper, the mask is created; if the color of a pixel
in the original image is within the defined range, its
corresponding one in the mask is set to 1. Otherwise,
it is set to 0. The final mask image has the same
dimensions as the original screenshot and contains
only 0s and 1s;

3) through the bitwise AND operator, the mask is ap-
plied; the AND operator multiplies the mask pixels
with the original image ones. The result is an image
where only the pixels that were set to 1 in the mask
retained their original values and all the other ones
are black (set to 0);

4) apply the standard template matching algorithm.

The code in Listing 2 illustrates the process described in Java.

Fig. 2. From left to right; the original screenshot of the interface, the
calculated mask, and the final image with the mask applied. Note that the
template is preserved without modifications by the mask, while the rest of the
interface is hidden

C. Text Recognition

The Text Recognition use-case aims to extract textual
elements from the interface and store them in string variables;
in this way, they can be compared with their expected values
to see if they are correct or not. It is useful when it is necessary
to read a text to verify that a function is correct; for example,
to test that the Map can be properly zoomed, the automated
test reads the text that indicates the current map resolution,
and compares it with the expected one, since to each zoom
level is associated a specific resolution.

Text recognition capabilities are provided by Tesseract
OCR. This library requires two main components: a Machine
Learning model and an input image. For the Machine Learning
model, a pre-trained one has been used (tessdata best, which is
one of the most accurate models [34]); since the fonts used are
standard ones and the whole interface contains only English
texts, there was no need to create an ad-hoc model. The input
image is, as usual, provided by taking a screenshot of the
interface.

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 281 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

Listing 2 Enhanced Template Matching algorithm.

void MatchHSV(Scalar lBound, Scalar
uBound) {↪→

// Local variables
Mat hsvSource = new Mat();
Mat mask = new Mat();
Mat maskedImage = new Mat();
// Conversion to the HSV color space
Imgproc.cvtColor(this.src, hsvSource,

Imgproc.COLOR_RGB2HSV);↪→

// Mask evaluation
Core.inRange(hsvSource, lBound,

uBound, mask);↪→

// Bitwise and operator on the source
image and the mask↪→

Core.bitwise_and(this.src, this.src,
maskedImage, mask);↪→

// Perform the standard template
matching algorithm on the masked
image

↪→

↪→

return this.matchTemplate(maskedImage,
this.template, this.output,
Imgproc.TM_CCORR_NORMED);

↪→

↪→

}

As for the previous use-case, the standard algorithm did not
perform well; the initial results obtained by directly plugging
in the screenshot of the Scale Line element showed an average
accuracy of around 60%, which is not sufficient to avoid false
positives. However, while previously the algorithm was not
accounting for partly transparent template image, this time
the input image is at fault; to improve the accuracy, many
techniques described by the literature and the documentation
of Tesseract OCR were applied.

1) Conversion to grayscale; [35] demonstrated that
Tesseract OCR consistently performed better on
grayscale images.

2) Cropping; cropping the image allowed to reduce to
the minimum the presence of foreign objects that
might interfere with the text extraction.

3) Resizing; the Tesseract documentation and the liter-
ature recommend the usage of images whose height
is at least 20 pixels [36] and as close as possible to
100 pixels [37] to achieve the best results.

4) Unsharp Masking; this technique sharpens the in-
put image to increase its quality. It is achieved by
subtracting the smoothed image from the original
one [37]. In particular, in Open CV this technique is
realized through the addWeighted [38] function which
is used to blend the blurred image and the original
one.

5) Thresholding and inversion; the image is first con-
verted into binary and then inverted to obtain a
black text on a white background, as required by the
Tesseract OCR documentation [36].

6) Morphological operations; opening and closing
hats [39] are two morphological operations used to
remove small objects (bright, on a dark background)
and holes (darker region inside a bright object).

They are used to further enhance the text before the
extraction.

7) Text cleaning; finally. After the text has been ex-
tracted from the processed image, it is cleaned to
remove all non-alphanumeric characters and whites-
paces.

The code in Listing 3 illustrates the process described in Java;
the values of the functions’ parameters have been evaluated
empirically and tuned to achieve the best results.

Fig. 3. Side by side comparison of the initial screenshot and the processed
one, with their real dimensions

Listing 3 Post Processing steps.

Mat PostProcessImage(Mat src) {
// Mat src is already in grayscale and

cropped↪→

// 3. Resize
if (src.height() < 100) {

double scale = 4.6;
Imgproc.resize(src, src, new

Size(src.width() * scale,
src.height() * scale),
Imgproc.INTER_CUBIC);

↪→

↪→

↪→

}
// 4. Unsharp Masking
Imgproc.GaussianBlur(src, src, new

Size(1, 1), 3);↪→

Core.addWeighted(src, 1.5, src, -0.7,
0, src);↪→

// 5. Thresholding and inversion
Imgproc.threshold(src, src, 127, 255,

Imgproc.THRESH_BINARY);↪→

Core.bitwise_not(src, src);
// 6. Morphological operations
Mat element =

Imgproc.getStructuringElement(↪→

Imgproc.CV_SHAPE_RECT, new Size(1,
1), new Point(0, 0));↪→

Imgproc.morphologyEx(src, src,
Imgproc.MORPH_OPEN, element);↪→

Imgproc.morphologyEx(src, src,
Imgproc.MORPH_CLOSE, element);↪→

return src;
}

V. HOW TO WRITE A TEST

Writing a test is straightforward; if using JUnit as a test
runner, it is sufficient to create a function and annotate it with
the @test annotation. In this way, JUnit will automatically
execute it. Inside the test function, instantiate the class corre-
sponding to the functionality desired; for example, to check if

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 282 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

an element is present in the interface, instantiate the Template
Matching class. This class receives, as parameters, the template
to use and a screenshot of the interface (which can be acquired
with Selenium or other browser automation tools). Then, it is
possible to call one of the available match methods, such as the
MatchHSV one (its implementation is shown in Listing 2), that
will perform the Template Matching algorithm and return an
object containing the location of the template and the similarity
score. The MatchHSV function requires two parameters (lower
and upper bound) used to create the mask (shown in Figure 2)
and isolate the template from the rest of the interface.

VI. RESULTS

As mentioned before, to verify the efficacy of the tech-
niques and the improvements concerning the standard algo-
rithms provided by OpenCV and Tesseract OCR, a series
of tests have been implemented: these tests automatically
performed the GUI testing of some of the features present in
the 2D Tactical Map. The results collected includes the average
accuracy score and time to complete the test; the averages were
calculated by running the test on the same machine and with
the same conditions for 100 times. For the Template Matching,
the average has been calculated by running it 100 times per
each metric for both its standard and enhanced versions.

The Template Matching algorithm has been evaluated with
the CenterMapOnEntityTest; this test verifies if the Cen-
terMapOnEntity feature works correctly. This feature allows
users to quickly center the map around any of the entities
present in the Map during the simulation and it is useful to
find an entity when there are multiple ones together. When the
function is activated, a (green) marker (the one shown in Fig. 2)
appears around the entity. The automated test invokes the
function and takes a screenshot; then, it applies the Template
Matching algorithm to verify that the marker appeared and
is positioned in the center. Finally, if the marker is found,
it creates an annotated image with the similarity score and
bounding boxes around the marker location (See Fig. 4).

Fig. 4. Result of the CenterMapOnEntityTest

Tables I, II show the benchmark results of the Template
Matching algorithm used by the test; the rows display the
metrics used to calculate the similarity score and the execution
time, while the columns contain the results of the standard
and enhanced versions. From the tables, it emerges that the
application of the masking technique consistently improved
the results in terms of accuracy, without affecting too much
the time needed to perform the validation (in the worst-case

scenario, there is a 105 ms increment). Given the scores,
the test employs the CCORR NORMED metric used for the
Template Matching.

TABLE I. TEMPLATE MATCHING ALGORITHM RESULTS (TIME)

Metric Standard Enhanced Variation
CCORR NORMED 1173 ms 1278 ms +8.95%

CCOEFF NORMED 1237 ms 1278 ms +3.31%

SQDIFF NORMED 1177 ms 1210 ms +2.8%

TABLE II. TEMPLATE MATCHING ALGORITHM RESULTS (SCORE)

Metric Standard Enhanced Variation
CCORR NORMED 0.7631 0.9880 +29.47%

CCOEFF NORMED 0.8112 0.9851 +21.44%

SQDIFF NORMED 0.5395 0.9757 +80.85%

The techniques belonging to the Text Extraction use-case
were instead tested with the ZoomInTest; this test verifies that
the Map can set its resolution correctly for all the zoom levels,
starting from the lowest (level 2) to the highest one (level 22).
As mentioned before, each zoom level is associated with a
specific Map resolution; the test zooms in the Map, then reads
the Scale Line element, which displays the current resolution,
and compares its text with the expected one. Compared to
the previous test, which verified a high-level feature, this one
focuses on a lower-level one to check the zoom capabilities,
that are used by many other functions.

The average processing time for the 20 zoom level is
3.668s, while the average score is 1.0, or 100%; note that
this score was achieved by tailoring the techniques described
before to this specific task. It is possible that to obtain similar
results for other elements present in the interface a different
combination of methods is needed; in particular, cropping
and resizing the image might not be needed at all, and the
values used to apply the unsharp masking method need to
be calculated ad-hoc for the new element. The method that
drastically improved the initial score was the image resizing
and the unsharp masking which improved the final score
by around 10% and 5% respectively. Even though the test
processes 22 images for every run, the memory footprint of the
algorithm is negligible; the largest generated image is 4KB.

The Pattern Detection techniques are tailored to verify very
specific cases, where the Template Matching is not sufficient
and the Text Extraction is not needed. These techniques are
employed by pass-or-fail tests, that do not have a score; indeed
the pattern is either found (or at least part of it) or not. Since
the dimensions and shape of the pattern are not known in
advance, it is not possible to calculate a score based on the ratio
of pixels found/total pixels. The tests use a tolerance score,
which defines the minimum number of pixels that must be
discovered to consider the test as passing. For this reason, the
score reported is the percentage of tests that passed out of 100,
and not the average of each test run; the average time estimates
the time needed to complete the algorithm. Compared to the
other benchmark, the average time per run is longer because
the test uses the Template Matching algorithm to locate the
entities, and injects complex JavaScript code to activate the
feature.

The test devised to verify the efficacy of the Pattern
Detection algorithms is the TrajectoryTest; this test verifies

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 283 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

if the Trajectory feature works correctly. The purpose of this
feature is to visualize the trajectory that an entity has traveled;
the trajectory is represented with a line that starts from the
tail of the entity and has the same color as it. The automated
test invokes the relevant functions to activate the feature on a
target entity, then waits for some seconds for the trajectory to
appear (the trajectory is not drawn when the feature is inactive
to save resources); after the time elapsed, it centers the map
around the target entity and grabs a screenshot of the interface.
The centering process is needed to ensure that the target entity
appears in the screenshot (since it traveled in a certain direction
for some time, it might have left the viewable area). Finally,
the screenshot is processed to determine if the trajectory is
present and if it starts close to the tail of the entity and has
the correct color.

The result of this procedure is an annotated image that
shows the starting and ending points of the trajectory and
bounding boxes around the entities present on the Map,
together with the detection accuracy, as shown in Fig. 5 below.

Fig. 5. Result of the TrajectoryTest

Table III shows the results collected; as expected, the
average execution time is higher compared to the other tests
due to the greater number of operations that the test performs.
The score cannot be directly compared because, as mentioned
before, it is not the accuracy of each test run, but the ratio of
tests passed versus tests executed. Nonetheless, given the fact
that the shape and dimensions of the pattern are not known
in advance and that, since the trajectory is drawn at run-time,
a small delay when acquiring the screenshot can affect the
pattern, it can still be considered a good score.

TABLE III. PATTERN DETECTION ALGORITHMS RESULTS

Score (%) Average execution time (ms)
74 7873

Compared to the standard version of the algorithms im-
plemented in the OpenCV and TesseractOCR libraries, this
paper presented enhanced versions, targeted at this particular
interface; despite these enhancements, the time and space
complexities of the algorithms did not change. So, to estimate

the computational power and time required, it is possible
to study directly the source code of the original algorithms,
considering that the enhancements add a little overhead.

VII. CONCLUSION

This paper showcased techniques that aim to provide
software developers and testers with additional GUI testing
methods to automatically test interactive user interfaces, that
cannot be fully tested using the current state-of-the-art frame-
works. These techniques, categorized into use-cases, employ
well-established and robust algorithms to analyze screenshots
of the interface and verify the correctness of the functions’
output.

Through Computer Vision and Machine Learning algo-
rithm, they can check if elements appeared and their positions,
extract and read texts, and discover abstract patterns. Thanks to
the integration with WebDriver, they can inject JavaScript code
to simulate user interactions and access low-level functions as
well.

Finally, since they do not depend upon any specific pre-
existing framework and do not have particular requirements,
they can be easily integrated into CI/CD systems such as
Jenkins and common test runners such as JUnit 5.

Techniques’ efficacy has been proven through their ex-
tensive usage in automated tests performed the 2D Tactical
Map, a complex interface packed with features; the preliminary
results demonstrated that is possible to create automated tests
to visually verify advanced and interactive user interfaces and
ensure their correctness.

REFERENCES

[1] A. Issa, J. Sillito, and V. Garousi, “Visual testing of Graphical User
Interfaces: An exploratory study towards systematic definitions and
approaches,” 2012 14th IEEE International Symposium on Web Systems
Evolution (WSE), Sep. 2012.

[2] C. Kaner, Exploratory Testing, Nov. 2006. [Online]. Available:
https://www.kaner.com/pdfs/ETatQAI.pdf

[3] W. E. Lewis, Software Testing and Continuous Quality Improvement.
CRC Press, Jun. 2017.

[4] D. Graham, E. V. Veenendaal, and I. Evans, Foundations of Software
Testing: ISTQB Certification. Cengage Learning EMEA, 2008.

[5] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific
Computing. Cambridge University Press, Oct. 2010.

[6] K. Wiegers, Creating a Software Engineering Culture. Pearson
Education, Jul. 2013.

[7] J. A. Clapp, S. F. Stanten, W. W. Peng, D. R. Wallace, D. A. Cerino,
and R. J. D. Jr, Software Quality Control, Error, Analysis. William
Andrew, 1995.

[8] R. Binder, Testing Object-oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Professional, 2000.

[9] P. Aas, S. Dixit, T. Eden, L. Bruce, S. Moon, X. Wu,
and S. O’Hara, HTML 5.3: 4.12. Scripting, Oct. 2018. [On-
line]. Available: https://www.w3.org/TR/2018/WD-html53-20181018/
semantics-scripting.html#the-canvas-element

[10] Percy — Visual testing as a service. [Online]. Available: https://percy.io

[11] ChromeDriver - WebDriver for Chrome. [Online]. Available: https:
//chromedriver.chromium.org

[12] JavaScript End to End Testing Framework — cypress.io. [Online].
Available: https://www.cypress.io

[13] RaiMan’s SikuliX. [Online]. Available: http://sikulix.com

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 284 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

[14] E. Borjesson and R. Feldt, “Automated System Testing Using
Visual GUI Testing Tools: A Comparative Study in Industry,”
2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 350–359, Apr. 2012. [Online].
Available: http://ieeexplore.ieee.org/document/6200127/

[15] SeleniumHQ Browser Automation. [Online]. Available: https://www.
selenium.dev

[16] JUnit 5. [Online]. Available: https://junit.org/junit5

[17] Jenkins. [Online]. Available: https://www.jenkins.io

[18] B. Garcı́a, M. Gallego, F. Gortázar, and M. Munoz-Organero, “A Survey
of the Selenium Ecosystem,” Electronics, vol. 9, no. 7, p. 1067, Jul.
2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/7/1067

[19] OpenCV. [Online]. Available: https://opencv.org

[20] Tesseract OCR – opensource.google. [Online]. Available: https:
//opensource.google/projects/tesseract

[21] Instructor/Operator Station (IOS) Design Guide. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a192055.pdf

[22] Teaching and Testing in Flight Simulation Training Devices (FSTD).
[Online]. Available: https://www.easa.europa.eu/sites/default/files/dfu/
206904 EASA EHEST HE 10.pdf

[23] Instructor Station for FS2020, Prepar3D, FSX, FSW and X-Plane - FS-
FlightControl. [Online]. Available: https://www.fs-flightcontrol.com/en

[24] Instructor Station — ALSIM. [Online]. Available: https://www.alsim.
com/simulators/instructor-station

[25] Wetzel Technology GmbH - IOS. [Online]. Avail-
able: http://www.wetzel-technology.com/Solutions/Operator Station/
operator station.html

[26] D. U. Thibault, Commented APP-6A - Military symbols for land based
systems, Sep. 2005, NATO Unclassified.

[27] D. J. Hemanth and U. Kose, Artificial Intelligence and Applied Math-
ematics in Engineering Problems: Proceedings of the International
Conference on Artificial Intelligence and Applied Mathematics in En-
gineering (ICAIAME 2019). Springer Nature, Jan. 2020.

[28] OpenCV: Template Matching. [Online]. Available: https://docs.opencv.
org/4.4.0/de/da9/tutorial template matching.html

[29] R. Brunelli, Template matching techniques in computer vision: theory
and practice. Chichester, U.K: Wiley, 2009.

[30] I. Pham, R. Jalovecky, and M. Polasek, “Using template matching for
object recognition in infrared video sequences,” 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC), pp. 8C5–1–8C5–9, Sep.
2015. [Online]. Available: http://ieeexplore.ieee.org/document/7311477/

[31] ——, “Combining Template Matching and Background Subtraction
Techniques to Detect Objects in Infrared Video Sequences,” Advances
in Military Technology, vol. 11, no. 2, Nov. 2016. [Online]. Available:
https://apl.unob.cz/dam/20

[32] K. Subhalakhsmi and V. S. Soundharam, “Automatic License Plate
Recognition System Based on Color Features and Vehicle tracking,”
International Journal of Engineering Research, vol. 3, no. 04, p. 4,
2015.

[33] SikuliX - the basics — SikuliX 2.x+ documentation. [Online].
Available: https://sikulix-2014.readthedocs.io/en/latest/basicinfo.html#
sikulix-how-does-it-find-images-on-the-screen

[34] tesseract-ocr/tessdata best: Best (most accurate) trained LSTM models.
[Online]. Available: https://github.com/tesseract-ocr/tessdata\ best

[35] C. Patel, A. Patel, and D. Patel, “Optical Character Recognition by Open
source OCR Tool Tesseract: A Case Study,” International Journal of
Computer Applications, vol. 55, no. 10, pp. 50–56, Oct. 2012.

[36] Improving the quality of the output — tessdoc. [Online]. Available:
https://tesseract-ocr.github.io/tessdoc/ImproveQuality

[37] M. Brisinello, R. Grbic, M. Pul, and T. Andelic, “Improving optical
character recognition performance for low quality images,” 2017
International Symposium ELMAR, pp. 167–171, Sep. 2017. [Online].
Available: http://ieeexplore.ieee.org/document/8124460/

[38] OpenCV: Adding (blending) two images using OpenCV. [Online]. Avail-
able: https://docs.opencv.org/3.4/d5/dc4/tutorial adding images.html

[39] OpenCV: More Morphology Transformations. [Online]. Available:
https://docs.opencv.org/3.4/d5/dc4/tutorial adding images.html

__PROCEEDING OF THE 28TH CONFERENCE OF FRUCT ASSOCIATION

-- 285 --

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on May 12,2021 at 07:34:49 UTC from IEEE Xplore. Restrictions apply.

