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ABSTRACT

To date, the most successful onset detectors are those based on
frequency representation of the signal. However, for such methods
the time between the physical onset and the reported one is unpre-
dictable and may largely vary according to the type of sound being
analyzed. Such variability and unpredictability of spectrum-based
onset detectors may not be convenient in some real-time applica-
tions. This paper proposes a real-time method to improve the tem-
poral accuracy of state-of-the-art onset detectors. The method is
grounded on the theory of hard real-time operating systems where
the result of a task must be reported at a certain deadline. It con-
sists of the combination of a time-base technique (which has a high
degree of accuracy in detecting the physical onset time but is more
prone to false positives and false negatives) with a spectrum-based
technique (which has a high detection accuracy but a low tempo-
ral accuracy). The developed hard real-time onset detector was
tested on a dataset of single non-pitched percussive sounds using
the high frequency content detector as spectral technique. Experi-
mental validation showed that the proposed approach was effective
in better retrieving the physical onset time of about 50% of the hits
detected by the spectral technique, with an average improvement
of about 3 ms and maximum one of about 12 ms. The results also
revealed that the use of a longer deadline may capture better the
variability of the spectral technique, but at the cost of a bigger la-
tency.

1. INTRODUCTION

The research field of Music Information Retrieval (MIR) focuses
on the automatic extraction of different types of information from
musical signals. One of the most common application domains
of such a field is that of automatic music transcription [1]. An-
other domain is represented by the identification of timbral aspects
[2], which might be associated to different expressive intents of a
musician [3] or to a particular playing technique that generated a
sound [4]. The retrieval of the instant in which a pitched or un-
pitched musical sound begins, generally referred to as onset de-
tection, is a crucial step in a MIR process. Numerous time- and
spectrum-based techniques have been proposed for this purpose
(see e.g., [5, 6]), some of which are based on the fusion of various
methods [7].

Up to now, the majority of MIR research on onset detection
has focused on offline methods based on the analysis of large da-
tasets of audio files. Nevertheless, different techniques have also
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been developed for real-time contexts [8, 9, 10], especially for re-
trieving information from the audio signal of a single musical in-
strument [11, 12]. Real-time implementations of some onset detec-
tion techniques have been made available in open source libraries
(e.g., aubio' [13]). Typically, the performance of an onset detec-
tor is assessed against annotated datasets. Such annotations may
define onset times in line with human perception [14] or with the
actual physics (which are generally referred to as perceptual and
physical onset times respectively [6]).

Once an onset has been detected, it is possible to apply, to
the adjacent part of the signal, algorithms capable of extracting
different types of information (e.g., spectral, cepstral, or temporal
features [15, 16]). For instance, such information may be used to
identify the timbre of the musical event associated to the detected
onset. In turn, the identified timbre may be utilized for classifica-
tion tasks by means of machine learning techniques [17]. A chal-
lenging timbral classification concerns the identification of differ-
ent gestures performed on a same instrument. For this purpose, it
is crucial to understand the exact moment in which an onset be-
gins. Indeed lot of the timbral information is contained in the very
first part of the signal of a musical event.

However, to date, the onset detection methods available in the
literature are little sensitive to the challenge of retrieving the exact
initial moment of a musical event (i.e., the physical onset time).
For instance, the Onset Detection Task specifications of the Music
Information Retrieval Evaluation eXchange (MIREX)Z, and most
of the papers in the area of onset detection, consider detected on-
sets as true positives if they fall within a window of 50 ms around
the onset time reported in an annotated dataset. Furthermore, the
vast majority of freely available datasets for MIR research are not
accurate at millisecond or sub-millisecond level, which would be
useful to designers of real-time MIR systems.

Currently, the most successful onset detectors are those based
on frequency representation of the signal [5, 6, 18] (as shown by
the results of MIREX context between 2005 and 2017°). Typically,
detecting efficiently and effectively an onset using spectral meth-
ods requires at least 5.8 milliseconds after the occurrence of the
peak of the involved onset detection function (ODF), considering
a window size of 256 samples for the Short Time Fourier Trans-
form and a sampling rate of 44.1 kHz. However, for such methods
the time between the actual onset and the reported onset is un-
predictable and may largely vary according to the type of sound in
question. This is due to the fact that spectral methods are not based
on the actual initial moment of the hit but on the identification of
the ODF’s peak (or its beginning), which may occur some millisec-
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onds after the physical onset. Such variability and unpredictability
of spectrum-based onset detectors may not be convenient in some
real-time applications. An example of such applications is rep-
resented by those hybrid acoustic-electronic musical instruments
that must react with minimal latency to a performer’s action, in-
volving a response (such as the triggering of a sound sample) that
accounts for the correct classification of the timbre of the sound
acoustically produced (see e.g., [4]).

This paper addresses the improvement of existing onset de-
tectors to achieve a less variable and more predictable time accu-
racy in real-time contexts. Specifically, we limit our investigation
to sounds of single non-pitched percussive instruments (therefore
implementing a “context-dependent” method, not a “blind” one).
In more detail, we do not consider instruments capable of produc-
ing radically different sounds, such as those of a full drum kit, but
rather all the possible gamut of sounds resulting from hits on a
same instrument (which may be produced by the player using dif-
ferent gestures). This research originated while developing an im-
proved version of the smart cajén reported in [19], which belongs
to the family of smart musical instruments [20]. For that applica-
tion it was fundamental to retrieve with a higher degree of tempo-
ral accuracy the onsets corresponding to each hit produced on the
smartified acoustic cajon, since the portion of signal subsequent to
each onset was utilized for gesture classification (using audio fea-
ture extraction methods and machine learning algorithms based on
the extracted features). The classified gesture was then repurposed
into a triggered sound sample concurrent with the acoustic sound.

Notably, the real-time repurposing of a hit in hybrid acoustic-
electronic percussive instruments such as the smart cajon, poses
very strict constraints in terms of accuracy of detection and tempo-
ral reporting: the system not only must guarantee that a produced
hit is always detected, but also that the onset is reported within a
certain latency as well as that such latency is constant. Any suc-
cess rate of onset detection different from 100% or with a too high
latency is simply not an option for professional musicians, who re-
quire a perfectly responsive instrument and feel that they can truly
rely on it. This imposes that the latency between their action on the
instrument and the digital sound produced in response to it must
be imperceivable.

Such strict requirements parallel those of hard real-time ope-
rating systems where a task must be accomplished at the end of
a defined temporal window (deadline), otherwise the system per-
formance will fail [21]. Therefore, for the terminology’s sake, to
distinguish our method from other real-time algorithms less sensi-
tive to temporal accuracy we introduce the notion of hard real-time
onset detector (HRTOD) and soft real-time onset detector (SR-
TOD)*. The latter are those methods that have more tolerant con-
straints in terms of the accurate onset time identification as well
as in the variability of such time. Examples of methods belong-
ing to the SRTOD category are the implementations reported in
[11] and [12], which present a real-time drum transcription sys-
tem available for the real-time programming languages Pure Data
and Max/MSP. Another example is represented by the study re-
ported in [22], where a recurrent neural network is employed for
the onset detection task. Notably, our proposed method does not
intend to reduce the actual latency of state-of-the art methods. In-
stead it aims at guaranteeing that the time of an onset is reported
more accurately at the end of a set time window computed from

4This terminology should not be confused with that used to discrim-
inate onsets as hard (usually by percussive instruments, pitched and un-
pitched) or soft (e.g., produced by bowed string instruments).

the physical onset, in the same way as it happens for tasks in a
hard real-time operating system.

The remainder of the paper is organized as follows. Section 2
describes the proposed onset detector that meets the requirements
mentioned above as well as an implementation for it in Pure Data.
Section 3 presents the results of the technical evaluation performed
on various datasets of single percussive non-pitched instruments,
while Section 4 discusses them. Section 5 concludes the paper.

2. PROPOSED HARD REAL-TIME ONSET DETECTOR

The proposed onset detection algorithm relies on the combination
of time- and spectrum-based techniques. This choice was moti-
vated by our initial experimentations, which suggested that meth-
ods based on temporal features may have a higher degree of accu-
racy in detecting the physical onset time. On the other hand, onset
detection methods based on the spectral content may be less prone
to false positives and false negatives compared to methods based
on temporal features if their parameters are appropriately tuned,
although they may suffer from unpredictability and variability is-
sues in timing accuracy.

The proposed onset detector aims to take advantage of the
strengths of the two approaches. Specifically, a time-based tech-
nique capable of detecting more reliably the very initial moment
of a hit, but also more sensitive to false positives and false nega-
tives, was used in parallel with a spectrum-based technique that
was tuned to optimize the performance in terms of F-measure.
Moreover, our goal was not only to detect an onset with minimal
delay after the initial moment of contact of the exciter (e.g., hand,
stick, etc.) and the resonator (e.g., skin of a drum, wood of a cajon
panel), but also to ensure a high temporal resolution in tracking
two subsequent hits. We set such resolution to 30 ms since this
is approximatively the temporal resolution of the human hearing
system to distinguish two sequential sound events [23]. Such a
resolution is also adopted by the real-time onset detector proposed
in [22].

The implementation of the proposed onset detector was ac-
complished in Pure Data, considering as input a mono live audio
signal sampled at 44.1 kHz. The implementation was devised to
achieve high computational efficiency, and more specifically, to
run on low-latency embedded audio systems with low computa-
tional power (e.g., the Bela board [24]), which may be involved in
the prototypization of smart instruments. The next three sections
detail the utilized time- and spectrum-based techniques as well as
the adopted fusion policy.

2.1. Time-based method

The time-based method (TBM) here proposed is inspired by the
approaches to onset detection described in [5] and [8]. It must
be specified that this technique only provides as output an onset
timing, not the associated peak. Notably, the time-based method
proposed in [25], which employs the logarithm of the input signal’s
energy to model human perception, was not utilized. This was due
to the fact that we were interested in the physical onset not in the
perceptual one. Figure 1 illustrates the various steps in the onset
detection process.

We generated an ODF as follows. Firstly, we filtered the input
signal with a high pass filter whose cutoff frequency was tuned on
the basis of the type of percussive instrument being analyzed. This
is the main difference with the time-based methods reported in [5],
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Figure 1: Block diagram of the various steps involved in the time-
based onset detector.

which do not follow this initial step. Performing such a step allows
one to drastically reduce the number of false positives while at the
same time preserving (or only marginally affecting) the true posi-
tives. Secondly, we computed the energy by squaring the filtered
signal. Subsequently, the energy signal underwent a smoothing
process accomplished by a lowpass filter. This was followed by
the calculation of the first derivative and again the application of
a lowpass filter. The cutoff frequencies of the lowpass filters are
configurable parameters.

Subsequently, a dynamic threshold (which is capable of com-
pensating for pronounced amplitude changes in the signal profile)
was subtracted from the signal. We utilized a threshold consist-
ing of the weighted median and mean of a section of the signal
centered around the current sample n:

o0(n) = X -median(D[nm]) + a - mean(D[nm]) (1)

with n,,, € [m — a, m + b] where the section D[n,,] contains
a samples before m and b after, and where A and « are positive
weighting factors. For the purpose of correctly calculating the me-
dian and the mean around the current sample, the pre-thresholded
signal must be delayed of b samples before being subtracted from
the threshold. The parameters a, b, A and « are configurable. The
real-time implementation of the median was accomplished by a
Pure Data object performing the technique reported in [26].

The detection of an onset was finally accomplished by consid-
ering the first sample n of the ODF satisfying the condition:

n>dn) & n>p @

where (3 is a positive constant, which is configurable. To pre-
vent repeated reporting of an onset (and thus producing false pos-
itive detections), an onset was only reported if no onsets had been
detected in the previous 30 ms.

2.2. Spectrum-based onset detection technique

Various algorithms for onset detection available as external objects
for Pure Data were assessed, all of which implemented techniques
based on the spectral content. Specifically, we compared the ob-
jects i) bonk~ [27], which is based on the analysis of the spectral
growth of 11 spectral bands; ii) bark~, from the timbrelD library”,
which consists of a variation of bonk~ relying on the Bark scale;
iii) aubioonset~ from the aubio library [13], which makes availa-
ble different techniques, i.e., broadband energy rise ODF [5], high
frequency content ODF (HFC) [28], complex domain ODF [29],
phase-based ODF [30], spectral difference ODF [31], Kulback-
Liebler ODF [32], modified Kulback-Liebler ODF [13], and spec-
tral flux-based ODF [6]. Several combinations of parameters were
used in order to find the best performances for each method.

All these spectral methods shared in common a variable de-
lay between the actual onset time and the time in which the onset
was detected. In the end aubioonset~, configured to implement
the HFC was selected because it was empirically found to be ca-
pable of providing the best detection accuracy. This in line with
Brossier’s observations reported in [13]. A refractory period of 30
ms was applied after a detection to eliminate possible false posi-
tives within that window.

2.3. Fusion policy

Our strategy for combining the two onset detectors calculated in
parallel consists in considering an onset as true positive if detected
by HFC, and subsequently retrieving the initial moment by looking
at the onset time of the corresponding onset (possibly) detected by
TBM. The policy to fuse these two types of information highly
depends on the deadline for reporting the onset after the physical
one. In our HRTOD such a deadline is a configurable parameter,
which must be greater than the duration of the window size chosen
for HFC. On a separate note, we specify that while the time based
method acts on a high-pass filtered version of the input signal, HFC
uses the original signal.

The fusion policy is presented in the pseudocode of algorithm
1. For clarity’s sake, the reader is referred to Figure 2. If HFC
produces an onset and TBM has not yet, then the onset time is
computed by subtracting the duration of HFC’s window size from
the time of the onset detected by HFC, and such an onset is re-
ported after the difference between the deadline and the duration
of HFC’s window size. Any onset candidate deriving from TBM
produced in the 30 ms subsequent to the reporting of HFC gets
discarded.

Conversely, if TBM produces an onset and HFC has not yet,
then the algorithms checks whether an onset is produced by HFC
in the next amount of time corresponding to the duration of HFC’s
window size minus the femporal error that is estimated affecting
TBM (i.e., the delay between the time of the physical onset and
the time of the onset reported by TBM). If this happens, then such

5 Available at www.williambrent .com
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onset is reported after the amount of time corresponding to the
deadline minus the duration of HFC’s window size, and the onset
time is computed by subtracting the duration of HFC’s window
size from the time of the onset detected by HFC. The error that
affects TBM is a configurable parameter for the algorithm, whose
value must be less than the duration of HFC’s window size. Such
an error is estimated on the basis of analyses performed on the
input signal of the percussive instrument in question.

If HFC has not produced an onset in the time corresponding
to the duration of HFC’s window size minus the estimated error
after the reporting of the onset by TBM, then the algorithm checks
whether HFC has produced an onset in the next amount of time
corresponding to deadline minus the duration of HFC’s window
size plus the estimated error. If this happens, then such onset is re-
ported immediately and the onset time is computed by subtracting
the estimated error from the time of the onset detected by TBM.

Critical to this fusion policy is the choice of the parameters
governing the behavior of TBM. Indeed, if TBM produces too
many false positives there is the risk of erroneous associations of
onsets detected by TBM to onsets detected by HFC, as these might
happen just before the actual physical onset. Conversely, if TBM
produces too many false negatives, then HFC will be much less
improved in terms of accuracy.

To estimate the TBM error while designing a real-time au-
dio system, one could record the live audio produced by the sys-
tem, apply the TBM configured to optimize the F-measure, and
calculate the temporal distance between the time of the onset re-
ported by TBM and the time of the physical onset (which can be
determined by annotating the recorded dataset). Subsequently, the
found minimum value could be used as the TBM error estimate.
This guarantees that all onset times marked as improved with re-
spect to the corresponding ones of the HFC, are effectively im-
proved. Nevertheless, this would also limit the amount of improve-
ment, as some onsets detected by HFC could be improved using a
slightly greater TBM error estimate.

A less conservative strategy here recommended, consists in
tolerating a small error on the time reporting of few onsets, such
that the temporal accuracy for those onsets would be worsen only
marginally, while at the same time increasing the temporal accu-
racy of a much greater number of HFC onsets. Specifically, our
criterium adopted to determine an estimation of the TBM error is
to select the minimum between the value of the first quartile and
the result of the sum of 1 ms to the minimum delay found between
the beginning of the sinusoid and the annotated physical onset:

1% quartile

TBM _estimated_error = min { 3)

1+ min(error)

This allows one to tolerate in the worst case a maximum error
of 1 ms for some of the hits (whose amount is lower or equal than
the 25% of the total hits of the dataset). Therefore, the calculated
onset times deriving from TBM can be effectively considered as
an improvement compared to HFC in the majority of the cases.

3. EVALUATION

The temporal accuracy of the developed HRTOD was assessed on
a dataset of recordings of four single percussive non-pitched in-
struments: conga, djembe, cajén, and bongo. In this evaluation
we were not interested in assessing the detection accuracy of our

HRTOD in terms of F-measure as this is fully determined by HFC
(whose performance is well documented in the literature [28, 13]).
Our focus was exclusively on the assessment of the actual im-
provement offered by HRTOD in terms of temporal accuracy com-
pared to HFC. For this purpose, we carefully selected the param-
eters of TBM in order to maximize the F-measure and avoid any
error in the fusion policy, likewise for HFC (see Table 1). In this
investigation we were also interested in assessing whether the per-
formance of HRTOD differed between the instruments and for two
deadlines.

3.1. Procedure

In absence of accurate annotations of datasets of single percussive
non-pitched instruments among those normally used by the MIR
community, which could have served as a ground truth, we opted
for using two freely available online libraries®. Such libraries were
selected for the high quality recordings and the involvement of a
large variety of playing styles and percussive techniques on the
four investigated instruments. Those libraries contain 81 short
recordings of hits on conga, 38 for djembe, 85 for cajon, and 31
for bongo.

To annotate the datasets we visually inspected the waveforms
of the files and considered the first clear change in the waveform
as an actual physical onset. Specifically, in this manual process
we aimed at achieving an error tolerance of 0.5 ms. We did not
annotate the whole database but only 100 hits per each instrument.
Such annotated hits were those utilized to determine the estimated
error of TBM. They were selected as follows. We recorded along
with the file waveform, two additional tracks containing short si-
nusoidal waves beginning at the instants in which the onset were
detected respectively by HFC and TBM (see Figure 2). Subse-
quently, for each sinusoid in the TBM track that was related to a
true positive detected by HFC but happening before it, we calcu-
lated the time difference between the annotated physical onset and
the beginning of the sinusoid. In this calculations one needs to add
the time corresponding to b samples of which the waveform was
delayed (in our case this corresponds to 0.045 ms as 2 samples
were used for b).

For each instrument we randomly chose a subset of files and
considered the first 100 hits satisfying the mentioned condition.
For our purpose, an amount of 100 hits gives a reasonably accu-
rate measurement in statistical sense and could be considered as
the number that a designer of a real-time system would use to get
the estimate of TBM error from analyzing live recordings of the
system. Table 2 shows for each instrument the results of the anal-
ysis conducted on the 400 annotated hits to determine the estimate
of TBM error, as well as the corresponding average and maximum
error one would still get using it.

We configured HRTOD with two deadlines, at 11.6 and 18 ms,
to compare its performance in the case of a short and long dead-
line. Indeed a longer deadline would have been able to capture
those onsets detected by HFC after the short deadline is elapsed,
given the HFC variability. The deadline of 11.6 ms was selected
because it is equivalent to the time needed to compute analyses on
512 samples at 44.1 kHz sampling rate, therefore, the first 11.6 ms
of the signal can be utilized without involving in the analysis any

Shttp://cdn.mos.musicradar.com/audio/samples/
musicradar-percussion-samples.zip and http:
//www.stayonbeat .com/wp-content /uploads/2013/
07/Bongo-Loops_StayOnBeat.com_.zip
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Figure 2: Waveforms of the input signal of a hit on cajon and of three short sine waves triggered at the times of detecting the onsets using
TBM, HFC, and HRTOD, with indications of the temporal events relevant to the HRTOD.

pre-onset portion of the signal. The deadline at 18 ms was selected
by considering a maximum reporting time of 20 ms for possible
operations computed on such portion of the signal, which could
take up to 2 ms (considering for instance real-time feature extrac-
tion, application of machine learning techniques, and repurposing
of the analyzed sound). Specifically, this amount was justified by
the results of the evaluation of the smart cajon prototype presented
in [19]. These showed that a measured average latency of 20 ms
between action and electronically generated sounds was deemed
to be imperceivable by four professional cajon players. This was
likely due to a masking effect in the attack of the acoustic sound
that superimposes over the digital one.

3.2. Results

Table 3 presents the results of the application of the developed
HRTOD to the dataset using the parameters for TBM reported in
Table 2, and the two deadlines of 11.6 and 18 ms. For each in-
strument and for the whole dataset, we computed the number of
hits detected by HFC, the number of hits affected by the tempo-
ral accuracy improvement of TBM, along with their percentage,
their average improvement, and the maximum improvement. It is
worth noticing that in calculating the improved performances of
HRTOD compared to HFC we compared each onset time reported
by HRTOD against the time reported by HFC minus 5.8 ms (this
would be indeed the minimum time employed by HFC to report an
onset after its actual occurrence given the 256-point window).
Table 3 also offers a comparison of the performances of HRTOD

for the two deadlines by calculating their difference along the in-
vestigated metrics.

4. DISCUSSION

The first noticeable result emerging from Table 3 is that HRTOD
effectively improved the temporal accuracy of HFC for all instru-
ments and for both the investigated deadlines. The variability of
HFC was drastically reduced since about 50% of the hits of the
dataset were effectively improved for both the deadlines involved,
with an average improvement of about 3 ms and maximum one of
about 12 ms. Bongo was found to be the instrument most improved
in terms of percentage of improved hits, although the average im-
provement was the lowest compared to the other instruments. Con-
sidering both the number of improved hits and the amount of ave-
rage and maximum improvement, the cajéon was found the instru-
ment most positively affected by our HRTOD.

Furthermore, the results show that the use of a longer dead-
line generally improves all the considered metrics. Almost the 5%
of the total hits were improved between the two deadlines, which
shows the variability of HFC (and of spectral-based methods in
general). Such a variability might constitute an issue in certain
real-time applications. Indeed an error of more than 12 ms, as
found for some hits on conga, may be critical when attempting to
analyze in real-time the corresponding sound and classify it against
other hits detected with no delay. The achieved average improve-
ment due to the longer deadline was less than 0.5 ms compared
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Algorithm 1: Pseudocode of the fusion policy of the involved TBM and HFC onset detection techniques in the developed HRTOD.

Input: Input signal, deadline, TBM_estimated_error, HFC_window_time
Output: Time of the detected onset reported when the deadline is elapsed

1 TBM_detected <— TBM(input_signal)
2 HFC_detected <— HFC(input_signal)
3 if HFC_detected == true & & TBM_detected == false then
4 HFC _onset_time +— get_time(HFC_detected)
5 for the next 30 ms ignore any TBM_detected == true
6 sleep(deadline - HFC_window_time)
7 onset_time < set_time(HFC_onset_time - HFC_window_time)
8 return onset_time
9 else
10 if HFC_detected == false & & TBM_detected == true then
11 TBM_onset_time <— get_time(TBM_detected)
12 sleep(HFC_window_time - TBM_estimated_error)
13 if HFC_detected == true then
14 HFC_onset_time < get_time(HFC_detected)
15 sleep(deadline - HFC_window_time
16 onset_time <— set_time(HFC_onset_time - HFC_window_time)
17 return onset_time
18 else
19 sleep(deadline - HFC_window_time + TBM_estimated_error)
20 if HFC_detected == true then
21 onset_time < set_time(TBM_onset_time - TBM_estimated_error)
22 L return onset_time

Table 1: Values of parameters of TBM and HFC utilized for each instrument. Legend: HP = high-pass, LP = low-pass, f. = cutoff

[frequency.

TBM HFC
HP f. | LP1f. | LP2 f. a b B A a | threshold | window hop
(Hz) (Hz) (Hz) (samples) | (samples) (samples) | (samples)
Conga 4000 25 25 62 2 6e-09 | 0.8 | 0.8 0.2 256 64
Djembe | 7500 25 25 62 2 7e-09 | 0.8 | 0.8 0.2 256 64
Cajon 7500 25 25 62 2 2e-09 | 0.8 | 0.8 0.2 256 64
Bongo 7500 25 25 62 2 2¢-08 | 0.8 | 0.8 0.2 256 64

to the shorter one, but the maximum improvement was found to
be more than 7 ms. The instrument that was mostly affected by
such increment in the duration of the deadline was the cajon, while
bongo was basically unaffected. This shows that for certain instru-
ments a short deadline may be sufficient in capturing reliably the
physical onset time of almost all hits.

Despite these encouraging results, it should be noticed that
there are still margins for improvement as the method is affected
by errors: as shown in the last two columns of Table 2, about the
75% of the hits would have needed a larger value for the TBM
error estimate parameter. According to the analysis on the 400
annotated hits, the average error is below 2 ms but the maximum
one could amount to about 11 ms. On a different vein, it is also
worth noticing that the proposed method is context-dependent as it
was built and tested by exploiting knowledge on the input signals
investigated.

Although the algorithm has been conceived for real-time pur-
poses, it can be applied to offline contexts as well. Offline algo-
rithms have a number of advantages compared to real-time meth-
ods that might be exploited to refine the HRTOD here proposed.

For instance, one could consider portions of the signal in the fu-
ture, apply normalizations, use post-processing techniques, or uti-
lize buffers larger than those here involved. A more timely accu-
rate onset detector might have important implications not only for
the design of musical instruments such as the smart ones [20], but
also for automatic music transcription tasks [1], including those
operating in real-time (see e.g., [11, 12]). Moreover, another ap-
plication domain of the temporal accuracy improvements produced
by the proposed method may be that of computational auditory
scene analysis [33]. Although the sounds involved in this study
belonged to the category of percussive non-pitched instruments,
the method is expected to work well on several other categories
of sounds (including the non musical ones as for instance foot-
step sounds, which have clearly discernible temporal characteris-
tics like the sounds of percussive instruments [34]).

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a real-time method to improve the tempo-
ral accuracy of state-of-the-art onset detectors. The study focused
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Table 2: Results of the analysis conducted on 100 annotated onsets for each instrument to determine the value of TBM estimated error, the
expected average and maximum error of HRTOD.

mean=tstd err | min | max | 1st quartile | TBM estimated max error on HRTOD mean | HRTOD max
(ms) (ms) | (ms) (ms) error (ms) 1st quartile (ms) error (ms) error (ms)
Conga 2.03+0.13 0.5 7 1 1 0.5 1.03 6
Djembe 1.740.14 0.5 7 1 1 0.5 0.7 6
Cajoén 3.454+0.2 0.5 13 2 1.5 1 1.95 11.05
Bongo 2.98+0.09 1 6 2 2 1 1.98 4
Table 3: Results of the proposed HRTOD involving the two deadlines and their differences.
deadline | instrument | #hits | # improved | % improved mean improvement max improvement
(ms) + standard error (ms) (ms)
116 Conga 916 292 31.87 2.7840.06 4.94
' Djembe 485 183 37.73 2.740.06 4.94
Cajon 1094 532 48.62 3.740.05 4.94
Bongo 965 643 66.63 2.02+0.04 4.94
Total 3460 1650 47.68 2.77+0.03 4.94
13 Conga 916 325 35.48 3.331+0.11 12.2
Djembe 485 200 41.23 3.140.11 10.75
Cajon 1094 646 59.04 4.2610.06 9.83
Bongo 965 644 66.73 2.0340.04 4.94
Total 3460 1815 52.45 3.17+0.04 12.2
. Conga 0 33 3.61 0.55 7.26
Difference | i e 0 17 3.5 0.4 5.81
Cajén 0 114 10.42 0.56 4.89
Bongo 0 1 0.1 0.01 0

Total 0 165 4.77 0.38+0.12 7.26

on percussive non-pitched sounds and for this purpose the spec-
tral technique based on the high frequency content [28] was em-
ployed, which was reported in the literature to work the best for
this type of sounds [13]. Experimental validation showed that the
proposed approach was effective in better retrieving the physical
onset time of about 50% of the hits in a dataset of four percussive
non-pitched instruments compared to the performance of the onset
detector based on high frequency content. The proposed method
was inspired to hard real-time operating systems, which aim to
guarantee that a task is accomplished at certain deadline. Our re-
sults revealed that the use of a longer deadline may capture better
the variability of the spectral method (but at the cost of a bigger
latency). Indeed, about 5% of the hits of the whole dataset could
not be improved by involving a shorter deadline, although not all
instruments were affected equally by a longer deadline.

The proposed method is expected to extend to sounds from
other musical instruments as well as to non-musical sounds. Sev-
eral directions for future work can be explored. Firstly, we plan
to involve the proposed HRTOD in the development of percussive
smart instruments such as the smart cajén reported in [19]. Sec-
ondly, future work will include experimenting with other types of
data, in particular sounds from pitched instruments. An open ques-
tion is whether the method would work for polyphonic pitched
percussive instruments, where there can be one or more onsets
roughly produced at the same time. Another future direction con-
sists in exploring the performance of the proposed onset detector
in noisy or multi-source environments, where for instance pitched
onsets might be present. Finally, concerning context-awareness, it
would be interesting to investigate whether the concepts presented
in this study can be generalized to a more “blind” scenario.

The dataset involved in this study, the corresponding annota-
tions, and the Pure Data source code are available online’.
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