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Abstract—In recent years, various explainable artificial intelli-
gence methods have been proposed for different Music Informa-
tion Retrieval (MIR) applications. However, real-time aspects of
explainability and the musical applications that they can enable
have been largely overlooked by researchers. In this position
paper, we propose a vision for real-time explanation systems in
the context of MIR applications. We describe three application
scenarios where such systems would be useful, although the same
concepts can be applied to other musical cases. In the first
scenario, we propose a system that provides explanations for an
emotion recognition model in the context of music composition
and production. In the second scenario, we investigate the
benefits of explaining a music genre recognition system for live
performances. In the third scenario, we explore the utility of
an explanation system for an application in musical instrument
learning. Subsequently, we discuss the main challenges associated
with the envisioned real-time explanation systems and use cases,
especially in relation to the need for easy-to-grasp explanations
and to the possible embedding of such systems into smart musical
instruments.

Index Terms—Explainability, music information retrieval,
smart musical instruments.

I. INTRODUCTION

The field of Music Information Retrieval (MIR) has largely
benefited from the advancements in Deep Learning (DL) in
the past two decades. DL has been successfully applied to a
large variety of tasks such as music genre classification [1],
music transcription [2], music recommendation [3], chord
recognition [4], and music emotion recognition [5]. How-
ever, as the DL models grow in capacity (i.e., the ability
to learn and represent complex patterns) and increment the
number of parameters, the interpretation and understanding of
their internal mechanisms diminish. The so-called transparent
machine learning models, such as linear models, decision
trees, and rule-based models, are instead usually very easy to
interpret but in many cases they are not sufficient to achieve
high-accuracy results, especially when dealing with complex
tasks [6]. On the other hand, black-box models can usually
achieve very high performances, but as said earlier their inter-
nal mechanisms are obscured even for the model’s designer.
For this reason, the search for model-agnostic mechanisms
capable of inspecting the behavior of a DL model is gaining

more and more interest, as witnessed by its growing research
momentum [7].

The need for an explanation highly depends on the field
of application of the DL model [8]. For some safety-critical
fields, such as medicine [9], autonomous driving [10], and
air-traffic management [11], the trustworthiness of the model
is crucial. Even if very accurate when evaluated in their
test set, DL models can lead to very unpredictable results
when dealing with real-world inputs that are not appropriately
represented in the dataset used for their training phase [12].
Therefore, many techniques have been developed for a better
understanding of the models’ behaviors. Some of them, such as
Partial Dependence Plots [13] and Accumulated Local Effects
Plots [14], are useful for developing an intuition on the general
model interpretation as they belong to the family of global
model-agnostic methods. Other methods, such as LIME [15]
and Shapley Values [16] are local methods as they explain
individual models’ predictions.

In MIR applications there is a less pressing need for inter-
pretability and explainability of the models when compared
to other safety-critical domains [17]. Nevertheless, there are
some applications where implementing such systems may
lead to large benefits for both the model designer and the
final user. The designer may make use of interpretability to
gain insights into the model’s internal functioning, verify its
reliability, and have a better comprehension of the model’s
internal mechanisms. Moreover, she may gain insights into
the feature representation used as input for the model, and
discover which features the model relies more on. This process
can lead to the development of more compact models, i.e., with
fewer parameters, yielding in turn less power consumption and
reduced inference time.

The end user of a MIR application may also largely benefit
from the model’s explanations, even more so if those expla-
nations are provided in real time. This type of information
can make the user better understand the reasons behind a
specific output of the model, and provide her with more
insights on the model’s reasoning. The real-time aspect of the
system could also enable the user to verify the explanations
of the system while changing the input values and adapting
her behavior accordingly. To better clarify this concept with
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an example, let us consider the case of a musician who is
executing a performance with her musical instrument. A model
that outputs the emotion associated with her execution could
inform the musician about the reason for its response. The
user can then modify her playing accordingly and verify if
her adjustments impact the model response and why, hence
creating a feedback loop between the user and the AI model.

However, thus far real-time aspects of explainability and the
applications that they can enable have been largely overlooked
by researchers, with only a handful of examples existing in the
literature. This is especially true for musical contexts where
musicians generate the input for an explainable artificial intel-
ligence (XAI) system [18], [19]. To bridge this gap, this paper
proposes a vision for the field of real-time explainability in
MIR applications, focusing on the interaction of the musician
with the XAI system.

The remainder of the paper is organized as follows. In
Section II the main literature contributions are reviewed.
Section III explores the principal elements that compose the
proposed system. In Section IV we elaborate on three possible
concrete application scenarios, and Section V highlights the
main issues and challenges. Finally, Section VI summarizes
the main contribution of this paper and proposes future re-
search directions.

II. RELATED WORK

In the last few years, real-time explainability has been
explored for different domains, such as tabular data and
images [20], multi-agent systems [21], and networking (specif-
ically, graph neural networks) [22]. However, to the best of our
knowledge, only a handful of studies have focused on real-
time explanation in the field of Music AI [18], [19]. In fact,
a significant body of research emphasizes offline approaches,
and this is particularly prominent within the domain of MIR.

Choi et al. [23] proposed an explanation mechanism based
on auralization. They converted the learned convolutional
features obtained from deconvolution [24] into audio signals to
make them listenable. They found that the initial layers extract
simple audio concepts, such as the onset detector, while the
subsequent layers focus on more high-level audio features,
such as harmonic and rhythmic textures.

An interesting approach for explaining music emotion
recognition with a two-step approach is proposed in [25]. A
convolutional model is used to extract perceptually relevant
mid-level features that are then fed into a linear model (which
is intrinsically interpretable) for the emotions’ prediction. The
procedure incremented the model explainability at the cost
of a small loss in performance compared to an end-to-end
approach. For the mid-level features, the authors refer to the
dataset proposed in [26].

In [27], the authors proposed an explanation mechanism
for classifying playing techniques, such as vibrato, tremolo,
and trill. Their approach is based on convolutional networks
and layer-wise relevant propagation. They found how the
relevant regions of the explanations were associated with the

modulation rate of playing techniques, discarding irrelevant
features such as the pitch.

Mishra et al. [28] extended the local interpretability method
proposed in LIME [15] to the music domain and specifi-
cally to the singing voice detection problem. They explored
the interpretability with three different input representations:
temporal, frequency, and time-frequency. They proved how
high-accuracy values do not imply trustable models. They
also verified the correspondence between their model-agnostic
approach and saliency maps [29].

The explanations associated with time-frequency input rep-
resentations are usually not easy to interpret. Therefore, the
authors of [30] proposed another extension of LIME, where
the perturbations were created by adding and subtracting
components extracted by a source separation algorithm. This
approach enabled the explanation to be listenable.

Some contributions, although not strictly confined to the
realm of MIR, have successfully integrated real-time capabili-
ties within the broader domain of Music AI, as exemplified by
the two following works. The study reported in [18] explores
the importance of feedback between the AI system and the
musician during a performance of music improvisations. The
authors specifically focused on a collaborative improvising AI
drummer that is able to communicate its confidence through
an emoticon-based visualization. This research revealed a
favorable association between the external communication of
the machine’s internal state and the level of human engagement
in the music performance

The authors of the study reported in [19] delved into
the realm of real-time explainability within the generative
music domain by expanding upon a prior model known
as MeasureVAE [31]. Specifically, their approach enhances
model explainability through latent space regularization, en-
abling specific dimensions to align with meaningful musical
attributes. Additionally, they provide a real-time user interface
for dimension adjustments and offer visualizations of musical
attributes within the latent space to aid users in comprehending
and predicting the impact of latent space dimension alterations.
Their strategy aims to enhance collaboration between human
and AI systems, a field that has gained increasing attention in
recent years. This trend is evident in a recent publication [32],
where the authors introduced the field of Explainable Com-
putational Creativity (XCC) as a subfield XAI. The primary
objective of XCC is to establish bidirectional communication
channels between humans and Computational Creativity (CC)
systems, to promote co-creation and enhance the quality,
depth, and utility of their collaborative efforts.

III. VISION

In this section, we propose our general vision of real-
time explainability for MIR applications. This is illustrated
in Fig. 1. We propose a class of XAI systems that interact
with musicians at the moment in which the musical content
is generated. The system gets as input the musical signal
(symbolic, e.g., MIDI, or in the form of audio) and, at constant
temporal intervals, provides the user not only with the result
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Fig. 1. General structure of a real-time explanation system. The user inputs an audio signal which can be for example an instrumental execution, an entire
song, or an instrumental exercise. Then, the system outputs its prediction, which can consist of a label (e.g., genre, mood, and emotion) or an accuracy value.
The explanation provides the user with the reason(s) (possibly at different levels, i.e., using low/intermediate/high-level features) associated with the output,
which helps the user understand and improve her performance.

of the machine learning model but also with the explanation
for such a result. In particular, we contextualize our vision not
only in the usage of conventional devices and software (e.g.,
Digital Audio Workstations running on a laptop) but also in
the emerging family of smart musical instruments [33] and the
paradigm of the Internet of Musical Things (IoMusT) [34]: the
XAI system is directly embedded in the musical instrument
itself, which produces the desired output and explanation
in real-time and transmits these wirelessly to an external
peripheral (e.g., a screen or a smartphone).

As described in Section II, explainability in the context
of MIR has been scarcely explored so far in the literature,
especially if compared to other domains such as computer
vision and natural language processing. However, the reason
associated with a specific output of a machine learning model,
especially if provided in real-time, can be useful for different
categories of users in the music context. Hereinafter, we make
use of a practical example to explain the concept more clearly.

Consider for example a music producer who is asked to
produce a song with some specific characteristics (e.g., genre,
mood, or emotional impact). For the sake of simplicity, let us
restrict our analysis to one characteristic: the musical genre.
If the producer decides to use an automatic system to verify if
the requested criterion is met, in general, she would lack the
information (i.e., the reasons) associated with a possible unde-
sired prediction. At this point, she could modify some aspects
of the production and reiterate the process, but she would base
her modification only on her skills (moreover, this trial-and-
error uninformed process would be rather time-consuming and
likely ineffective). To improve her work experience, we could
consider an implementation similar to the one proposed in
[28], which provides an explanation associated with the genre
prediction.

However, such an explanation may be difficult to grasp as
it could refer to some hardly interpretable audio features. It

can be related, for example, to some specific regions of the
spectrogram, which is a too low-level piece of information for
the producer. In this case, the producer should be provided
instead with more meaningful (and higher level) reasons
associated with the model output. In other words, explanations
need to be appropriate to the specific application (music
production in this case) and should provide insights that are
useful for the correction of the model’s input, if needed. The
explanation can be for example associated with specific instru-
ments that cause the model to output a particular prediction,
as proposed in [30]. As the authors of this paper describe,
this result can be achieved by decomposing the main signal,
in our example the song, into meaningful components with
a source separation algorithm. Then, an algorithm based on
LIME [15] is developed, where the components are utilized as
intermediate interpretable features. Therefore, the explanation
of the model is interpretable as it refers to components that
are meaningful for the user of the application. To clarify this
approach even better, let us imagine that the song is divided
into five components associated with five possible musical
instruments. The explanation of the model could refer, e.g.,
to the presence of the electric guitar as the main factor that
contributes to classifying the genre as rock. Therefore, the
producer could know where to intervene if she wants the model
prediction to be different.

Now the producer is provided with a genre prediction (e.g.,
rock) and the reason for that outcome (e.g., the presence
of the electric guitar) and can simply intervene on the song
according to this information. However, from a practical point
of view, there is still an issue with this approach. Every
time the producer needs a prediction and the corresponding
explanation, the song should be exported and processed by the
AI model. Moreover, with this approach, she would receive a
single prediction of genre and associated explanation for one
song, even if the song consists of many different parts (e.g.,
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verse, chorus, and bridge) that can largely differ from one
another. Both these issues can be resolved if the explanation
is provided in real-time. This, in fact, would allow the producer
to make modifications while observing the model outcome and
its associated explanation. By doing so, she can quickly gain
information on which actions modify the model’s output and
the reasons for those changes. Moreover, she could learn which
parts of the song contribute to specific musical genres and why.
These two aspects can provide useful insights for the user, who
could try for instance to learn some input-output relationship
discovered by the model. While these relationships may not
be so intuitive from a human perspective, the producer could
still make use of this acquired knowledge for subsequent
productions.

The illustrative example reported in Fig. 1 provides a moti-
vation for the proposed vision. In the next section, some other
possible scenarios for the application of real-time explanation
are provided, which further justify the need for real-time
explainability of MIR methods.

IV. SCENARIOS

In this section, some practical applications (beyond the
example discussed in the previous section) are proposed,
contextualized, and discussed.

A. Real-time explainability for emotion recognition in music
production

In music, the emotion conveyed by a specific piece of music
is a crucial aspect for both the listener and the performer.
In recent years, diverse machine learning paradigms have
been applied to the task of music emotion recognition [35]–
[38], but only a few works explored the related explainability
aspect [25], [39]. As far as we know, the real-time aspect of
such systems has not been yet explored.

Real-time explainability for music emotion recognition
models can be used as a tool for learning. The musician
who approaches a specific composition may be interested in
knowing if her song or performance reaches the desired goal in
terms of emotional impact. Moreover, the apprentice musician
may need an explanation associated with the output of the
model. This piece of information can in fact give insights into
how to correct her composition to obtain the desired emotional
impact.

To delve deeper into this approach, let us analyze another
example, where a musician wants to compose an original
song. Her intent with this composition is to convey a sense
of sadness, as this song is inspired by previous personal sad
experiences. She may start by writing the lyrics, the main
melody, and the chord progression of the new composition.
Then, she could choose which instruments are to be included
in the recording, and the parts of the song for each of them.
Then, as the production advances step by step, she could also
be interested to know if her song has the desired emotional
impact on the listener. Therefore, she could send the com-
position to other people to collect feedback on the emotional
impact of the song. Moreover, she could ask some more expert

friends about the reasons for their specific feedback, especially
if their emotion did not match the intended one. Thus, she
can get advice on what modifications must be performed in
order for the song to transmit more sadness. Some suggestions
can be related to the rhythm, the melody, or the choice of the
chord, just to give a few examples. The musician can then pick
the more convincing suggestions and modify her composition
accordingly.

Our proposal is to automate this process of getting valuable
real-time feedback on how to modify the song to achieve the
desired emotional impact. The composer can make use of
an AI-based application that outputs, e.g., every 10 seconds,
the label for an input song together with an explanation that
should be easy to understand for the user. This goal can be
achieved through an explanation based on the work proposed
by Chowdhury et al. in [25], where mid-level features, such
as dissonance, tonal stability, and rhythmic complexity are
used for the explanation of a specific emotion. Therefore, the
composer can discover the reason associated with an undesired
output of the model. For instance, if the system outputs
dissonance as the main element that contributes to the wrong
prediction, the artist can restrict her search and concentrate
more on the elements that contribute to the dissonance aspect
of the composition, such as chord choices. On the other
hand, if the model predicts the correct intended emotion, the
musician can make use of the explanation to exaggerate even
more the song’s emotional content in the desired direction.
As elaborated in Section III, where we presented the music
production example to elaborate the main view of our vision,
the real-time aspect of such a system would be crucial. In fact,
it would allow the musician to modify and adjust different
elements of the song during the listening phase, avoiding
the necessity of exporting the entire song to get the model
prediction and the associated explanation. Moreover, it would
allow the musician to focus on particular parts of the song,
and verify their specific emotional impact and explanation.

An interesting expansion of this application would be to
include multiple diverse explanations for the model output.
Taking advantage of the work proposed by Haunschmid et
al. [30], the mid-level interpretable features used for the
model’s explanation could be directly referred to the specific
music instruments, as briefly described in the previous sec-
tion. Therefore, an emotion prediction of happiness could be
directly related to the instrument that conveys that specific
emotion in the song. This concept can be expanded to other
mid-level features. Exploring which type of mid-level features
are most useful for providing explanations for different MIR
applications would be an interesting research direction.

B. Real-time explainability for genre recognition during live
performance

The performance is an important aspect of the musician’s
professional life. During the exhibition, musicians are able
to transmit energy, convey emotions, and create a specific
ambiance. Both for the case of performing an original song
or a cover, the artist (or the band) desires a specific impact
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on the listener. To obtain this goal, diverse aspects may be
considered and analyzed. In this context, we will focus only
on one aspect, the musical genre, but a similar approach can be
extended to other aspects of the song being performed (such
as the mood and the emotional impact).

The proposed real-time explanation system in this context
could be used during the band rehearsal. This system would
enable the band components to comprehend which adjustments
should be made for a specific outcome in terms of musical
genre. As before, we propose an example to make the concept
clearer. Let us imagine a band that aims to present some
classical rock songs and wants to make them more danceable,
as may be required by the event where they have to perform.
Therefore, they may decide to rearrange some songs to make
them less rock and more pop/dance. If they are experts, they
may recognize some of the elements that can be modified
to adjust the song arrangement to get the desired impact.
However, usually, there are different combinations of musical
instruments, instrumental parts, and execution intentions that
can lead to the same result. Different instruments can have
a highly different impact on the final genre and there may
exist unexpected combinations of the aforementioned elements
which lead to the same genre outcome.

Therefore, for musicians who are not appropriately trained
for this task, or for those who want to explore different
possibilities to enlarge their horizons, a real-time explanation
system for music genre classification can be helpful. As for
the case of music emotion recognition, explanations based on
human-interpretable mid-level features are required. In this
context, reasons based on single instruments can be very
useful. In fact, when an instrument is recognized as the most
impactful factor for a wrong prediction, different adjustments
can be made: for instance, the part of the song where that
instrument is played can be modified, and the effects applied
to that specific instrument can be added, subtracted, or tuned
differently, just to make a few examples.

By analyzing this specific use case, we can also appreciate
the importance of the real-time aspect of the proposed system.
In fact, as the explanations are provided online, the musicians
can try different adjustments and this can be done during the
execution of the specific song. This is especially true for those
modifications that can be made while performing the song,
such as activation/deactivation of effects, different right-hand
techniques, and different chord positions, if we consider the
electric guitar as an example. The real-time aspect also enables
to direct the musicians’ attention to specific song segments and
concentrate on the parts of the execution that are responsible
for the wrong genre prediction.

Similarly to what was mentioned in the music emo-
tion recognition scenario proposed earlier, different human-
interpretable features can be provided by the system to im-
prove usability. However, the type of explanation should be
chosen according to the scenario considered. In fact, the
changes that can be made are different if we consider the
context of a band rehearsal compared to the context of music
production elaborated earlier. For instance, in the case of the

band performance, the number of musicians and instruments
is fixed, and the number of effects is often very limited (and
applicable only to some instruments).

Another aspect that differentiates this specific scenario from
the context of music production is related to the device where
such a system is implemented. In fact, during band rehearsals,
it may be more convenient to have an external device im-
plementing the system, as it results in a more portable and
practical solution. Another extension of this approach would
consist of the implementation of one separate device for each
musical instrument (internally in the case of smart musical
instruments where the intelligence is embedded), which would
allow the corresponding musician to receive feedback and
explanations specifically related to her execution.

C. Real-time explainability for musical instrument learning

In the third scenario, we consider how a real-time explana-
tion system can be useful in the context of learning a musical
instrument. This scenario can be related to MIR as the model
should be able to retrieve and elaborate information from a
specific execution of the musician, as we will describe later.
Being quite an unexplored field, we will first describe why
and how machine learning can be used in this context. Then,
we will explore the role of the explanations and their utility,
especially if provided in real time. The focus of this application
is related to the execution of a specific song or exercise with
a musical instrument. In order to elaborate on how machine
learning can be implemented in this process, we consider the
execution of a solo with an electric guitar as an example.

The learning process of a guitar solo usually involves more
than one step. Initially, the musician needs to acquire some
knowledge related for example to the notes that should be
played, the finger positions, and the temporal duration of
each note. When the guitar solo (or a specific part of it)
is broadly memorized, another critical phase of the learning
process begins. At this point, the musician needs to bring the
level of her execution from a set of notes being played in
sequence to a real performance. This involves many different
aspects of the execution to be improved. Some examples
are the timing aspect, the cleaning of the execution (avoid
undesired noise or notes), the precision in notes’ changes, and
the correct loudness of each note which is influenced by the
right-hand technique. Moreover, there are some more subtle,
but very important aspects such as the playing intention, the
feeling, and the personal interpretation of the execution. These
last aspects are more advanced and less intuitive to grasp,
especially for people who are not in the field. From an intuitive
level, these improvements have the positive consequence of
avoiding a mechanical and cold execution of the guitar solo.
In fact, if we imagine an automatic machine that executes
a guitar solo playing the correct notes at the exact timing
and without dynamic micro-variations, we would immediately
recognize the absence of feeling, emotion, intention, and
personal interpretation.

For this second step of learning (after the solo is broadly
memorized), machine learning methods could be applied to
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make an evaluation of the performance execution. In fact,
considering a specific guitar solo, the learning process of
many guitarists would follow similar paths. While learning,
they usually make similar errors related to more concrete and
evident aspects in the initial stages and to more subtle and
interpretative aspects as the execution improves (as previously
described).

Therefore, for the improvement of a specific execution,
the guitar teacher finds always similar issues to be solved
and proposes appropriate solutions, which are the ones she
has found to work best for each specific problem. Machine
learning comes into place if we want to automate such
a process. This automatic system would be very useful if
we consider how most self-taught musicians approach their
learning phase. A source of information, which can be a book,
a guitar magazine, or, more frequently, an instructional video,
is selected and used as a reference. Even if this source can be
really valuable, the musician does not receive any feedback
on her performance, which instead would be very useful to
improve her learning experience and avoid mistakes as the
learning phase evolves.

The machine learning system would help the musician by
providing a score value related to the performance of the spe-
cific solo, together with an explanation of how to improve the
performance. There are different methods for the development
of a similar application. One approach consists of identifying
mid-level features, such as timing and presence of noise, and
correct dynamics as intermediate human-interpretable features.
Then, following the approach proposed in [25], a two-step
Deep Learning model can be trained. Also in this scenario, the
real-time aspect can be very helpful. While playing the song,
the musician can identify the specific passages that require
improvement. Moreover, after each execution, the system
could provide a report where, for each segment of the song,
the main issues are highlighted. For instance, the system may
indicate that the first 5 seconds of the execution have some
problems related to the timing aspect, while the subsequent
10 seconds present some undesired noise. This information
can be useful for indicating to the musician which parts and
aspects of the execution should be improved.

Notably, also in this case the inference and the explainability
components could be computed directly inside a smart musical
instrument. The result can then be wirelessly sent to an
external device, such as a laptop or a smartphone, which
visualizes it via a dedicated application.

V. CHALLENGES

The scenarios described in Section IV pose a set of technical
and non-technical challenges, which at present prevent the
creation of real-time XAI systems for musical applications.
In this section, the main challenges of the proposed approach
are elaborated. In identifying these challenges we considered
the standpoint of both the XAI system designer and the end
user. The significance of the latter is closely related to the field
of Human-Centered AI, which has gained notable attention

and research emphasis in recent years, as evidenced by recent
contributions, e.g., in [40].

Challenge 1: Identification of the users’ desiderata

To enable end users to understand, trust, and effectively
manage their intelligent musical partners, it is first of all nec-
essary to investigate what are the users’ desiderata related to
a real-time XAI system in musical settings. The identification
of the dimensions of end users’ explanation needs should be
the driving force underlying the design process of the system,
especially in terms of what information has to be provided
and what form of presentation for this information should be
used. This would maximize not just the usefulness of the
provided explanation, but also the trust towards the whole
AI system. Trust, indeed, is a fundamental factor in musical
partnership, especially when the musical activity unfolds in
real-time (e.g., performance). It is important to highlight that
desiderata may differ for different stakeholders [41], thus it is
paramount to conduct investigations for each kind of user of
a given real-time XAI system (performer, composer, teacher,
student, producer, etc.). On the other hand, it is also important
to devise personalized mechanisms accounting for individual
differences within the same class of users.

Challenge 2: Explanation representation for MIR

One of the main challenges is related to how the AI-
based application provides explanations to the user. Differently
from what happens in other domains, such as tabular data,
text, or images, the explainability of MIR applications has
been scarcely explored so far. The explanations associated
with the typical two-dimensional representation of the audio
spectrogram are typically useless from a user’s point of view.
In fact, a specific region of the spectrogram highlighted
as responsible for the model’s output is very difficult to
interpret (especially by musicians lacking a background in
signal theory). Therefore, suited mid-level human-interpretable
representations should be discovered. As previously described,
some solutions in this direction have been proposed, where the
explanations are related to perceptually relevant features [25]
or to the presence of musical instruments in the song [30].

One aspect that makes it difficult to develop mid-level
features is related to the scarce availability of datasets labeled
with such features. This is especially true in the proposed case
of instrumental learning, where new datasets related to very
specific aspects should be developed.

Challenge 3: Explanations for specific applications

Even if reasonable interpretable explanations are discovered
for the MIR domain, it should be explored which explanations
should be used for each specific application. For example, in
the music production context, explanations related to many
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different aspects such as the presence of reverb, compression,
and equalization, would be beneficial. On the contrary, for
band rehearsals, explanations associated with specific instru-
ments could be preferred. Ideally, more levels of explanations
should be provided for a single MIR application. This would
enable the user to choose the explanation representation(s)
more suited for the specific use case. This aspect can be
grasped if we consider the case of the artist who decides
to produce an original song. Initially, she may need more
high-level explanations related to the specific model output,
such as which instrument contributes more to the model’s
prediction. Then, as the production of the song advances, she
may be interested in more subtle elements that contribute to
the specific outcome, such as the effects applied, the general
equalization, and the amount of reverb.

Challenge 4: Application embedding

Another aspect that must be explored is related to the device
where the application is implemented. In the context of music
production explained earlier, the system can run directly as
an application on the computer that hosts the Digital Audio
Workstation. In this case, there is no need for portability or
implementation in limited-resource devices. On the contrary,
for other applications, such as those related to specific musical
instruments, it would be convenient to have the system running
on a compact portable device. Another possibility consists of
integrating the XAI system directly into the musical instru-
ment, as it has been explored recently in the literature on smart
musical instruments [33]. The challenging aspects here relate
to the need to devise efficient XAI systems for MIR that not
only work in real-time but also on embedded devices, which
are constrained in terms of computational power and memory.
Real-time embedded audio systems running machine learning
models is an active area of research (see e.g., [42], [43]), but
the development of embedded real-time XAI systems has not
been investigated yet to our best knowledge.

Challenge 5: Presentation form

It is crucial to devise effective methods that enable the end
user to make sense and take advantage of the explanation gen-
erated, while the musical activity unfolds. Notably, providing
an explanation in real-time while the musician is playing may
lead to an increase in the cognitive load [44]. Therefore, there
is a need to conduct research about the best methods that allow
one to provide the desired explanation in real time without
hampering the ability of the musician to express herself. The
definition of effective visualization strategies is fundamental
to achieving this goal (e.g., in the form of text, images, or
other visual forms). A complementary possible avenue for this
quest may concern the use of haptic feedback. Differently from
audition and vision, while playing, the sense of touch is mostly
an open sensory channel where it may be convenient to provide

real-time explanations (as shown for haptic notifications in
previous studies [45]). This entails conducting a completely
new strand of research about the design, implementation, and
evaluation of touch-based methods for explainability purposes.

Another potential source of issue concerns the sensation
of feeling somehow judged by the XAI system [46]. This in
turn may limit the creativity of the user. Therefore, there is
a need to conduct research on human factors as well as the
acceptability of such kinds of systems.

Challenge 6: Evaluation methods

In domains other than the musical one, while there is a
growing body of literature that has shown the benefits for users
of incorporating explanation in AI systems [47], [48], other
works have uncovered that there are situations when the added
explanations are not always beneficial [49]. This highlights the
need for investigations aiming at understanding if and when
explanations are necessary or useful. This is especially true for
the yet scarcely investigated domain of music. The benefits of
the proposed real-time XAI systems for musical stakeholders
must be fully investigated. As such, it is crucial to extensively
test with the end user the developed XAI methods, especially
in the actual context of use rather than in a laboratory setting.
For this purpose, novel evaluation methodologies specific to
the case of real-time XAI for MIR-based applications must be
devised.

VI. CONCLUSION AND FUTURE WORK

In this position paper, the possibility of real-time explain-
ability in the context of Music Information Retrieval appli-
cations has been explored and analyzed. First, we exposed
our vision proposing how to integrate the recent literature
discoveries related to audio explainability into practical appli-
cations, highlighting the importance of the real-time dimen-
sion. Subsequently, we proposed three application scenarios
where a real-time explanation system would be beneficial. In
the first scenario, we analyzed the impact on the context of
emotion recognition applied to the production of an original
composition. In the second scenario, we discussed the case of
live performances, especially in the context of band rehearsals.
In the third scenario, we argued about the positive impact
that the envisioned system would have on musical instrument
learning, with a specific focus on the guitar. Finally, we
identified the main open challenges ahead of us concerning
the implementation of the proposed explainable system.

The main future directions we want to elaborate on in this
final part are the primary necessary steps that would make our
vision realizable. One crucial aspect concerns the realization
of new datasets, whose labels could be used as intermediate
human-interpretable features, which are especially required if
we follow the explainability approach proposed in [39]. This is
particularly true in the musical instrument learning application,
where labels related to the imprecision of instrumental execu-
tions are needed. Data could be collected, e.g., by making use
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of the large amount of instrumental executions we can find on
online platforms such as YouTube and Instagram. Moreover,
a specific main machine learning model should be developed
for this scenario (as well as the other ones), as we described
in Section IV. Finally, one crucial future work direction is the
explanation representation. This aspect will necessarily involve
the collaboration of the end user with the machine learning
engineer, who should develop explanations that are useful for
the specific application. For this purpose, we suggest to adopt
a user-centered design approach.

It is the authors’ hope that the content of the present study
could stimulate discussions about the development of real-time
XAI systems for MIR applications, especially in embedded
settings.
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