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ABSTRACT

Onset detectors are used to recognize the beginning of musical
events in audio signals. Manual parameter tuning for onset de-
tectors is a time consuming task, while existing automated ap-
proaches often maximize only a single performance metric. These
automated approaches cannot be used to optimize detector algo-
rithms for complex scenarios, such as real-time onset detection
where an optimization process must consider both detection accu-
racy and latency. For this reason, a flexible optimization algorithm
should account for more than one performance metric in a multi-
objective manner. This paper presents a generalized procedure for
automated optimization of parametric onset detectors. Our proce-
dure employs a bio-inspired evolutionary computation algorithm
to replace manual parameter tuning, followed by the computation
of the Pareto frontier for multi-objective optimization. The pro-
posed approach was evaluated on all the onset detection methods
of the Aubio library, using a dataset of monophonic acoustic guitar
recordings. Results show that the proposed solution is effective in
reducing the human effort required in the optimization process: it
replaced more than two days of manual parameter tuning with 13
hours and 34 minutes of automated computation. Moreover, the
resulting performance was comparable to that obtained by manual
optimization.

1. INTRODUCTION

Audio Onset Detection (OD) is the process of detecting the be-
ginning of musical notes in audio signals and is typically used for
music database analysis tasks, such as automatic music transcrip-
tion or query by humming, and interactive music systems, such
as novel smart musical instruments. In OD research, two main
application scenarios can be distinguished: offline and real-time
OD. Music database analysis can be performed with offline OD,
which means that the recognition algorithm is applied to whole
audio recordings, and detection time is not critical. On the other
hand, real-time OD operates at a constant rate on an audio stream,
and the detection must be performed before predefined deadlines.
For this reason, real-time detection algorithms can only use the
portion of the audio signal that is available at a given time along
with past history (i.e., it cannot look into the future without in-
creasing the latency).

To date, most research on OD methods has focused on offline
applications [1, 2, 3] and real-time cases with rather generous time
constraints [4]. For these purposes, a wide range of probabilistic
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methods have been developed, such as deep learning approaches,
which typically run on PCs or powerful computers. Less atten-
tion has been devoted by researchers to the development and use
of OD methods that are specifically suited for hard real-time sce-
narios and can run on embedded devices, such as the Raspberry
Pi or BeagleBone Black single-board computers, which have lim-
ited computing power compared to a regular PC [5]. The use of
such methods is particularly relevant to some applications in the
emerging field of smart musical instruments [6], which may repur-
pose the information extracted from the signal with imperceptible
latency for the player (see, e.g., [7]).

Deterministic (i.e., non-probabilistic) OD algorithms are suit-
able for such applications because they require less computational
effort than existing methods based on neural networks [1, 4] and,
therefore, comply with the limitations of embedded devices. How-
ever, these algorithms require precise tuning of their parameters to
achieve high recognition accuracy low recognition latency. Such
tuning can be performed manually or with grid search, by measur-
ing the performance of the detector on a target data set of audio
recordings for different parameter values. Both tuning processes
can take a lot of time and can be impractical. Moreover, due to
the prevalence of offline applications, automated solutions used in
research often optimize a single objective function (i.e., detection
accuracy), while real-time applications require the optimization of
multiple metrics (i.e., detection accuracy and latency).

In this paper, we propose a general framework for parameter
tuning and performance evaluation of time-constrained real-time
onset detectors, which can be applied to any parametric OD tool
with minor modifications. To optimize detector parameters, our
method uses an Evolutionary Computation (EC) algorithm that
models solutions as individuals of a population and parameters
as genetic material. The EC population is updated iteratively us-
ing techniques inspired by natural evolution such as selection of
the fittest, reproduction, mutation of genetic material, and gener-
ational replacement. The selection drives the evolution towards a
goal by allowing the best solutions to take part in the reproduction
and mutation processes in order to produce better new solutions.
Moreover, the proposed method is suitable for multi-objective op-
timization.

The proposed procedure was applied to the OD algorithms of
the free and open-source Aubio library in order to optimize the
detector for a real-time timbre recognition method for acoustic
guitars. The target system should manage to detect each onset
in the audio signal and use a classifier to determine which play-
ing technique the guitarist is using. The classification information
is intended to be repurposed in real-time to play different sounds.
Complex sequential sounds that are separated by less than 30 ms
are generally perceived by the human hearing system as simultane-
ous [8], therefore this interval should be the maximum end-to-end
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latency of the recognition and repurposing system. A maximum
target latency of 20 ms was considered for the timbre recognition
algorithm alone, which can be split between the OD, feature ex-
traction, and classification tasks. It was found that the sum of the
last two tasks in the pipeline consistently takes 6 milliseconds, giv-
ing a maximum latency of 14 ms for the OD task. Moreover, the
variability of the detection latency across different sounds should
be low, so that the actual onset time can be estimated by subtract-
ing a fixed interval from the time of detection (see, e.g., [5]).

The following is the outline of our paper. In Section 2 we
discuss various studies related to onset detection and evolutionary
computation in music contexts. Section 3 describes the proposed
method for multi-objective optimization of onset detectors. Sec-
tion 4 reports the details of the application and evaluation of our
method. Finally, we draw our conclusions in Section 5.

2. RELATED WORKS

2.1. The Aubio library

The Aubio library [9, 10] is a free and open-source library de-
signed for audio feature extraction. At its current released version
(0.4.9) the Aubio library is in active development, and since its
inception, numerous improvements and algorithms were added to
its functionalities 1. One example of relevant improvement is the
addition of Adaptive Whitening 2 [11], which is a method for pre-
processing spectral frames that normalizes the magnitude of each
frequency bin with respect to a recent maximum value for the bin.
Such algorithm mitigates the effect of spectral roll-off and varia-
tions in the dynamic of the audio signal, thus improving the perfor-
mance of various detection methods of the library. An exception
to the improvement offered by Adaptive Whitening is the Modified
Kullback–Leibler (MKL) distance method [9, p. 42, formula 2.9],
which was proven to show detrimental effects, as also confirmed
by the present study.

The onset methods currently implemented in the Aubio library
are:

1. energy: Energy-based distance, which calculates the local
energy of the input spectral frame.

2. hfc: High-Frequency content [12], which computes the
high frequency content of signal. It has shown to be effi-
cient at detecting percussive onsets.

3. complex: Complex domain OD function [13], which uses
information both in frequency and in phase to determine
changes in the spectral content of the signal that might cor-
respond to musical onsets.

4. phase: Phase-based OD function [14], which uses informa-
tion both in frequency and in phase to determine changes in
the spectral content of the audio signal.

5. specdiff: Spectral difference OD function [15].

6. kl: Kullback–Leibler OD function [16].

7. mkl: Modified Kullback–Leibler OD function [10, Chapter
2].

8. specflux: Spectral flux [17].

1https://github.com/aubio/aubio/releases
2Added in Aubio version 0.4.5 https://aubio.org/pub/

aubio-0.4.5.changelog

While most of the research in the field has moved to proba-
bilistic and data-driven approaches [1, 2, 4, 3] (applied either to of-
fline contexts or real-time contexts with relaxed time constraints),
deterministic OD methods still offer the guarantee to be able to
run on tight time constraints for the real-time case. These methods
are also less computationally expensive than most of the neural
network-based counterparts (see e.g., [1, 4]), which is an essential
requisite for embedded devices.

The Aubio library has been available for a long time, however,
it can be verified that active development has been maintained over
the years. Furthermore, most of the available audio libraries (e.g.,
Essentia3 [18], Librosa [19], Madmom [20]) offer a very similar
selection of deterministic OD methods, with the sole exception
of some advanced methods (e.g., SuperFlux [21]), which tend to
improve the performance with soft onsets and polyphonic record-
ings (not necessary for this study since we performed detection on
monophonic recordings). On top of this, Aubio offers a very com-
plete and easy-to-use library with the addition of command line
executable programs that were of great aid when doing the perfor-
mance evaluation reported below.

2.2. Evolutionary Computation

EC is a family of optimization algorithms inspired by natural evo-
lution. These algorithms generate an initial population of random
solutions of the optimization problem. Each solution is defined
by a set of parameter values called “genotype”. Individuals in the
population are then selected for reproduction based on how “fit”
they are. One or more crossover operators are used to combine the
genetic material of the “good” solutions that were selected. Then,
random mutation can be applied to the genes of the offspring to
add randomness and help individuals to get out of local optima
in the optimization landscape. Finally, the population is replaced
by some or all of the offspring depending on a recombination op-
erator, and the evolutionary process is repeated for the new gen-
eration. The degree of fitness of an individual is determined by
an objective function that depends on the optimization problem.
The evolutionary process explores the optimization landscape and
searches for the global optimum.

The exploratory nature of EC algorithms lends itself well to
the creative areas of generative audio synthesis and algorithmic
composition. A typical use of evolutionary algorithms in sound
synthesis is to create systems that can optimize sound parameters
to achieve certain target sounds (see [22, 23]). The study reported
in [24] employs two stages of evolutionary optimization to suggest
topological arrangements for the functional elements of a sound
synthesis algorithm, as well as to optimize the internal parameters
of these elements. While the aforementioned approaches employ
a mathematical formulation for the fitness function of EC algo-
rithms, Johnson [25] uses an EC algorithm in an interactive manner
by having a user subjectively evaluate the fitness of each individual
in the population. Similar approaches are taken in the field of evo-
lutionary music composition, where some authors choose a spe-
cific composition goal and define a fitness function that drives evo-
lution towards it (see e.g., [26, 27]), while others use the interactive
approach with a user-evaluated fitness function (see [28, 29]).

Vatolkin et al. [30] apply EC algorithms to the field of music
information retrieval by optimizing feature selection for a musical
instrument classifier: their approach is to use the performance of
the machine learning classifier as a fitness function. This appli-

3http://essentia.upf.edu
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cation shows that EC algorithms perform well when there is no
derivable objective function for the problem. The same advantage
is shown by Faragó et al. [31] who successfully applied an EC
algorithm to the design of the sound processor of a hearing aid.
Similarly, Pepe et al. [32] employ two different EC algorithms
for tuning filter parameters of a multichannel audio equalization
system to match the desired frequency response.

Finally, while research on EC for musical onset optimization is
scarce, more than one study applied EC algorithms to Electromyo-
graphy onset detection for muscle activation analysis [33, 34].
Even though electromyographic OD is a different task than mu-
sical OD, the optimization strategy shown is similar. In particular,
Rashid et al. [33] describe how an EC can be applied to any detec-
tion algorithm that is deemed appropriate for a given problem.

The evolutionary optimizer utilized in the present study was
developed using the Inspyred Python library [35]. Inspyred pro-
vides a wide range of bio-inspired algorithms, including EC and
swarm intelligence, which is well documented, easy to use, and
customizable as needed.

3. PROPOSED METHOD

The procedure we devised for the optimization of an onset detector
performance considers both detection accuracy and latency (i.e.,
the time interval between an onset and its reporting). It can be
summarized with the following steps:

1. Create and annotate an input set of audio recordings for the
onset detector. The dataset can then be divided into an op-
timization set and a test set;

2. Prepare an evaluation algorithm that, given a set of input
parameter values, can execute the detector on the input data
and compute the metrics of interest;

3. Identify the parameters that dictate the latency of the com-
putation (A-parameters) and separate them from those that
can be optimized without affecting it (B-parameters). Other
parameters may need to be set to predefined values to meet
problem constraints (fixed parameters);

4. Run the EC algorithm for each combination of the A pa-
rameters of interest, considering the list of B-parameters as
the genotype of the EC algorithm. At this stage the perfor-
mance on the optimization set is used to drive the evolution;

5. Once the best results for each combination of the A-
parameters are obtained, find the Pareto front (or tradeoff
curve) considering as objectives both the accuracy metric
of choice and a metric that describes the latency distribu-
tion;

6. Select a solution that offers an appropriate compromise be-
tween the two competing metrics. All the solutions in the
Pareto tradeoff curve are viable. The final choice of param-
eters can be evaluated on the test data to ensure that it can
perform at best on new data.

The first step is to prepare a relevant recording sample and an-
notate every onset in it. Stratified random sampling can be used
to maintain the characteristics of interest of the original dataset.
The time resolution of the labels can vary depending on the appli-
cation of interest and the labeling process can be carried out with
the help of an annotation software. Furthermore, the same record-
ings can be labeled by more than one annotator to reduce potential

errors [10, p. 52]. The dataset can then be divided into an opti-
mization set and a smaller test set: the first will be used to drive
the optimization process, while the second will be used to test the
generalization performance of the final solution on new data. The
dataset used for this study is described in Section 4.1.

Step 2 involves the development of an “evaluator” program
that computes a measure of the success of the onset detector on
the input data. A tolerance window can be defined around each
hand-labeled onset and any detection that falls within this window
can be considered correct [10, Chapter 2.5.2]. In addition to cor-
rect detections, errors can be divided into false positives and false
negatives: the former are onsets that are detected outside a tol-
erance window, while the latter describe true onsets that are not
detected. Duplicate detections (more than one onset detected in
the same window) can either be counted separately or considered
as false positives (except for the first correct detection). Different
ratios can be calculated with these categories: Precision is the ra-
tio of correct detections to the number of detected onsets, while
Recall is the ratio of correct detections to the number of labeled
onsets. Precision and Recall can be combined using the F1 score,
which is defined as the harmonic mean of the two (Eq. 1).

F1 = 2× P ×R

P +R
(1)

Step 3 consists in categorizing the parameters of the detector:
the first classification can distinguish between fixed and free pa-
rameters, where the values of the former are given by the problem
at hand and the latter can be optimized to obtain the best perfor-
mance. Free parameters can be further divided into the following
categories:

1. A-parameters: parameters that have an impact on detection
latency

2. B-parameters: parameters that have no direct impact on de-
tection latency.

Then, a set of combinations of interest of the A-parameters can
be selected so that multiple single-objective optimization problems
can be solved to find the values that give the best accuracy met-
ric for each subproblem. The multi-objective optimization, which
considers both detection accuracy and latency, is left for a subse-
quent step.

Step 4 involves optimizing the B-parameters for every com-
bination of the A-parameters. For this task, an EC algorithm is
proposed as this class of optimization methods can be very robust
and requires no assumption on the problem or the input parameters
(black-box optimization). EC algorithms model the candidate so-
lutions of an optimization problem as individuals of a population,
and evolve such individuals in a way that is inspired by natural
evolution. For each generation, some individuals of the population
are selected for breeding, recombination leads to the creation of an
offspring, mutation can alter the nature of the generated solutions
and finally, the population is replaced by the offspring. The indi-
viduals of an EC algorithm are described by their genotype, which
is a set of values for the input parameters for the problem, and their
phenotype, which is the manifestation of the genotype in the form
of fitness of the solution (i.e., a measure of how close the solution
is to the global optimum). This evolutionary process leads to the
improvement of good solutions, which get closer to global optima,
while weak solutions do not survive. Pseudocode for a generic EC
algorithm is shown in Alg. 1 (inspired by [36]).
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Algorithm 1: Evolutionary Algorithm
Generate initial random population
while generation <= max_generation do

generation = generation+1
calculate fitness of each individual with the evaluator
select individuals depending on their fitness
perform crossover with probability crossover_rate
perform mutation with probability mutation_rate
use replacement strategy to create the new population

end

In the proposed method, the genotype is a vector of B-
parameter values. The phenotype is represented by the value of
the accuracy metric of choice and is obtained using the algorithm
designed in step 2. For each combination of A-parameters the EC
returns the single solution with the highest detection accuracy ob-
tained on the optimization dataset.

The fifth step is to take each solution obtained in the previ-
ous step and compute the set of optimal solutions with respect
to both the success metric of choice (e.g., F1-score) and a mea-
sure of the detection latency (e.g., maximum value or variance).
The optimal solutions are obtained by computing the Pareto front,
which is the set that contains all the solutions for which none of
the objective functions can be improved further, without reducing
some of the other objective values. Therefore, all the solutions
in the front, which are called non-dominated or Pareto optimal,
are equally good from an objective standpoint, and offer different
compromises between detection success and latency.

The final step is to select the single most desirable tradeoff be-
tween detection accuracy and latency among the optimal solutions
in the Pareto front. The selection is subjective and should take into
account the set of candidate tradeoffs and the problem domain.

4. EVALUATION

The proposed optimization procedure was evaluated by applying it
to all the OD methods offered by the Aubio library. The solutions
found by the EC algorithm were compared to the ones obtained by
manual optimization.

The source code is made available on an online repository4.

4.1. Input data

The input data used is a representative sample of a dataset com-
posed of individual monophonic guitar sounds. The dataset was
recorded with 6 acoustic guitars and 5 professional guitarists that
were asked to play an exhaustive range of sounds with 8 common
techniques, 4 of which produce percussive timbres.

The techniques that make use of the strings include using a
plectrum over the sound hole or the near the bridge, palm mute
and natural harmonics, whereas percussive sounds were produced
by striking the guitar body using the following techniques:

1. “Kick” technique: producing a sound that resembles a kick
drum by hitting the lower right part of the top of the guitar
body.

2. “Tom” technique: producing a sound by hitting the area of
the guitar body near the top of the end of the fretboard.

4https://github.com/domenicostefani/
BioInspiredOnsetDetection

3. “Snare-A” technique: producing a sound by hitting the
lower right side of the guitar body.

4. “Snare-B” technique: producing a sound by hitting the
muted strings over the last part of the fretboard.

Each percussive sound was recorded at 3 dynamic levels (pi-
ano, mezzo-forte, forte) and repeated from 10 to 100 times, while
the sounds for “pitched” techniques were recorded for every string
on a selection of frets5 between 0 and 20, and with 3 repetitions
for each dynamic level.

The sound signal was recorded from a combination of a con-
denser microphone and a piezoelectric pickup embedded in each
guitar (with the exception of one that included only a piezoelectric
transducer) in WAV format, with bit-rate and bit-depth of 48000Hz
and 24bit respectively.

For the optimization phase of this study, a sample of 1328 in-
dividual sounds was extracted from the main dataset with strati-
fied random sampling. In the sampled dataset, each combination
of guitarist and guitar is represented by a number of onsets that is
proportional to the original dataset. Moreover, the sampling proce-
dure produces the same number of sounds for each dynamic level.
A second sample of 336 sounds was used for the testing phase,
where the performance of the optimized detector was measured on
data that was not used for the optimization. Finally, the recordings
were labeled by one annotator with the open-source Audacity au-
dio software, providing ground truth onset labels for the evaluation
of the detector. The data used for this study is publicly available in
the project repository.

4.2. Evaluation algorithm

Step 2 consists in developing a program that can measure the suc-
cess of the onset detector on the input data.

Success was quantified using the average F1-score metric (Eq
1) for each playing technique in the dataset, considering as correct
detections only onsets that were detected in a tolerance window
of 20 ms that follows each hand-labeled onset (The non centered
window starts at each labeled onset and finishes 20 ms later). The
exact interval between each labeled onset and its time of detection
was measured.

The evaluation program takes as input a set of parameter val-
ues for the detector and runs the aubioonset6 executable that is
provided with the library. The executable was modified to produce
a text file with a list of the exact times at which onsets are detected.
Along with the measure of detection success, the detection latency
was recorded for each onset.

The program was developed using the Python programming
language and the metrics were calculated using the R language.
Finally, the program itself is designed to store any temporary file
in a different folder that is created for each execution of the eval-
uation program, to allow multiple parallel instances to run at the
same time without conflict.

4.3. Onset detector parameters

Step 3 involves distinguishing fixed parameters from free param-
eters. The fixed parameters, whose values are imposed by the

5Natural harmonics were played only on frets 5, 7 and 12, while most
of the other techniques were recorded from the open string (fret 0) to at
least the 15th fret, ending on a fret that depended on physical limitation of
each guitar.

6https://aubio.org/manpages/latest/aubioonset.
1.html
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requirements of the problem at hand, were the hop size and the
minimum inter-onset interval. The hop size is the number of sam-
ples between two consecutive analyses, and determines the rate at
which detection is performed: a value of 64 samples was deemed
adequate for our problem (64 samples at 48000 Hz equals 1.33
ms). The minimum inter-onset interval value is the shortest time
gap between the onsets that the analysis can report, and is imposed
to avoid double detections: a value of 20 ms was considered appro-
priate since it matches the real-time latency requirement described
in Section 1, and was found not to affect the detection of succes-
sive, reasonably quick, guitar onsets.

Contrary to fixed parameters, free parameters must be opti-
mized, and can be further divided into A and B-parameters. A-
parameters are all the settings that directly affect latency, and in
the case of Aubio, these are the buffer size and the actual OD func-
tion used. In contrast, the B-parameters for Aubio are the silence
threshold (in dB) and the onset threshold. The size of the buffer
and the algorithm used for detection directly influence latency by
determining the number of computations performed at each anal-
ysis, while the silence and onset thresholds only modify the signal
level considered as the noise floor and how strong a peak must be
in order to be considered an onset.

Table 1: Summary of Aubioonset parameters with the range con-
sidered for optimization, their category and whether they affect
directly the detection latency or not.

Aubio Parameter Optimization
Range

Category Determines
detection latency

Hop size - Fixed Yes*
Min. i.o.i.** - Fixed No
Buffer size [64,2048] A-par. Yes

Method Aubio methods A-par. Yes
Silence threshold [-60 dB, -30 dB] B-par. No
Onset threshold [0.1, 3.6] B-par. No

* Hop size affects the detection latency but it is not an A-parameter
since it is constrained by the problem requirements (fixed).
** Minimum inter-onset interval.

4.4. Single-objective accuracy optimization

For step 4, a reasonable range of A-parameters was selected, con-
sisting of buffer size values between 64 and 2048 samples (i.e., 64,
128, 256, 512, 1024, and 2048) and all 8 available onset methods,
plus MKL with adaptive whitening disabled at initialization. Each
combination of A-parameter values requires the optimization of
the remaining B-parameters to obtain the best F1-score.

An initial optimization approach was to manually select differ-
ent B-parameter values and measure performance using the eval-
uator script. The manual procedure consisted of a coarse grid
search, followed by a refinement of the parameters near perfor-
mance peaks in the search space. This technique was used be-
cause the brute-force approach of a fully automated grid search
showed to be either too coarse or too time-consuming. Manual
optimization proved to be time-consuming and required more than
2 workdays: given the large amount of human effort required and
the limited scalability of the manual procedure, an automated EC
algorithm was used.

The Inspyred Python was used to devise an EC optimizer.
Only a few modifications were required to modify the EC algo-
rithm from the library for the specifics of our problem. In partic-
ular, the individuals of the population were specified as vectors,
each containing two values for the silence and onset thresholds.

Furthermore, the program developed for step 2 was set as the eval-
uator of the EC algorithm, to be used to calculate the F1-score of
each individual (fitness of the individual). The Inspyred library
contains several standard evolutionary algorithms such as Genetic
Algorithm, Evolution Strategy, and Simulated Annealing as well
as a custom EC framework that allows different evolutionary op-
erators to be composed. The custom framework was used, and it
was found to work best for the problem at hand with the following
settings:

• Population: 30 individuals, where each individual is a vec-
tor containing a value for each B parameter. A greater num-
ber of individuals could increase the possibilities for im-
proving the solutions even with fewer generations, however,
it would require more execution time.

• Evolution termination: automatic termination after 30 gen-
erations. The termination strategy can be defined by trying
different values and evaluating the fitness plots: if fitness
keeps increasing over time the termination deadline can be
moved further away, while a stagnating behavior shows that
termination can happen earlier.

• Selection strategy: tournament selection with size 4, which
holds a “tournament” by randomly sampling n individuals
(4 in this case) and choosing the one with the best fitness
(see [37]).

• Crossover: Arithmetic and Laplace recombination opera-
tors (rate = 0.7), which are common choices for combin-
ing good solutions when using real-valued genotypes (see
[38, 39]).

• Mutation: Gaussian mutation operator, which adds a ran-
dom value from a Gaussian distribution to each element of
an individual’s genotype to produce a new offspring. The
probability of performing the mutation (mutation-rate) was
set to 0.7, while the mean and standard deviation of the
Gaussian distribution were 0 and 3.0 respectively. Muta-
tion helps candidate solutions to move away from potential
local optima in the fitness landscape.

• Replacement strategy: Generational Replacement with
elitism, meaning that the entire existing population is re-
placed by the offspring at the end of each generation, except
for the best n solutions (in this case with 1 elite), which sur-
vive if they are better than the worst n offspring. Elitism
helps to preserve the best individuals.

These parameter values were obtained by testing various combina-
tions on a reduced number of generations. For more information
on the parameters of EC algorithms, see the Inspyred documenta-
tion7.

4.4.1. Manual and Automatic optimization comparison

Eleven parallel executions of the EC algorithm were executed on
an Intel® Core™ i7-10750H CPU. The optimization instances for
the three highest buffer size values were scheduled on the first nine
parallel processes, while the remaining instances were executed on
the last two processes (see Fig. 1). This schedule was devised to
account for the longer time required for the evaluation of the per-
formance of optimizers with high buffer size values (more overall

7https://pythonhosted.org/inspyred/reference.
html
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computations). The last process terminated 13 hours and 34 min-
utes after the beginning of the optimization.

The best F1-score values obtained in each instance were com-
parable to those obtained by manual optimization. For both man-
ual and automated optimization, the F1 score was computed on
the test dataset, to evaluate the performance of the best parameter
configuration on new data. The mean of the difference between
the F1-score obtained in the test dataset with the EC and the man-
ual optimization process was 1.4 × 10−3 points and its standard
deviation was 1.2× 10−2
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Figure 1: Parallel EC process schedule. Each stack of bars rep-
resents the execution time of one of the parallel processes, while
each individual bar indicates a single EC optimization instance.

Table 2: F1-score values (percentage) of the best solutions ob-
tained from the EC algorithm for each combination of OD method
and buffer size used. The highlighted values are the non dominated
solutions of the Pareto front computed in Section 4.5 (Table 3).

Buffer size
64 128 256 512 1024 2048

M
et

ho
d

hfc 93.37 92.31 91.26 89.68 90.15 88.56
energy 94.10 94.20 94.80 94.82 95.58 91.63

complex 83.71 85.09 86.80 87.55 86.66 80.45
phase 76.20 82.34 87.40 82.06 74.26 71.62

specdiff 86.67 93.67 95.35 95.29 95.49 93.39
kl 85.17 86.16 87.95 87.52 89.19 82.41

mkl 84.84 85.90 87.22 86.96 88.18 88.14
specflux 84.49 91.75 92.43 91.21 87.97 86.82

mkl(noaw)* 95.18 97.08 97.42 97.38 97.30 96.30
* The MKL method with adaptive whitening disabled on initialization.

4.5. Multi-Objective Optimization

The result of step 4 is a set of solutions that are optimized for each
combination of A-parameters, while step 5 is to perform multi-
objective optimization to obtain the best overall performance in
terms of both detection accuracy and latency.

There two main requirements for our target application are the
following:

1. The maximum detection latency must be lower than 14 ms
to comply with the end-to-end 20 ms deadline defined in
Section 1 for the timbre recognition system. The system
is composed of the OD algorithm and a classification al-
gorithm that consistently takes 6 ms to execute, hence the
remaining time interval of 14 ms that is assigned to the de-
tection;

2. The variability of the latency distribution must be as low as
possible. Thanks to this, it will be possible to estimate the
time of the actual onset with high confidence by subtract-
ing a fixed temporal interval from the detection time (e.g.,
average or maximum detection latency).

For this reason, both the maximum latency and its variability were
calculated, in the form of upper Tukey fence and Interquartile
Range (IQR) respectively. Tukey fences [40] are values that de-
fine the range of a data distribution while ignoring data points
that differ significantly from other observations (i.e. outliers).
Tukey fences are commonly used to determine the position of
box plot whiskers, and are computed using quartile values (i.e.,
Q1, Q2, Q3) and a constant k, with a value of 1.5 for outliers [40]
(Eq. 2).

TF =
[
Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)

]
, k = 1.5 (2)

On average, 95.7% of the detected onsets were within the up-
per and lower fences computed. The IQR was used because, unlike
variance, it is expressed in the same unit of measure of the distri-
bution data (milliseconds). IQR can also be multiplied by four
in order to find the interval between the upper and lower Tukey
fences.

Considering the problem as an instance of multi-objective op-
timization with F1-score and latency IQR as objectives, the Pareto
front was found. This front is a set containing all the best tradeoff
results that are not dominated by any other solution: this means
that the points in the front describe solutions that are equally good
for both objectives. All the solutions whose maximum latency was
greater than the threshold defined (14 ms) were discarded a priori.

The solutions are shown in Fig. 2 along with the Pareto front
(dotted line) and the discarded results, indicated by the larger red
circle markers in the upper right area. A more detailed view of the
front is shown in Fig. 3 and the solutions are listed in Table 3.
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Figure 2: Solutions of step 4 represented in the space described
by the F1-score and the latency IQR objectives. The blue dotted
line represents the Pareto front that minimizes IQR and maximizes
the F1-score, while the solutions represented with the red hollow
circles are the ones discarded because their maximum latency is
over the maximum value allowed (14ms).

Table 3: Solutions in the pareto front of figures 2 and 3, with F1-
score as the first objective and IQR of latency as the second.

# Method Buffer
Size

F1-
score
(%)

Low
Tukey
fence
(ms)

Latency
mean
(ms)

High
Tukey
fence
(ms)

IQR
(ms)

a specflux 64 84.49 2.2 3.8 5.3 0.80
b specflux 256 92.43 3.1 4.8 6.3 0.81
c mkl(noaw) 64 95.18 2.7 4.5 6.2 0.88
d mkl(noaw) 256 97.42 4.2 6.0 7.7 0.89
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Figure 3: Closer view of the Pareto front shown in figure 2.

4.6. Choosing a solution

By definition, the Pareto front computed in step 5 contains solu-
tions that offer different compromises on the two objectives, and
it is used to support the subjective choice expressed by a human
decision-maker. For this reason, any tradeoff belonging to the
Pareto front can be chosen depending on the problem requirements
and the shape of the curve.

For the problem at hand, solution #d (Fig. 3, Tables 2 and 3)
was chosen since it provides the greatest F1-score value without
having excessive latency IQR. Solution #d was obtained with the
MKL method, no adaptive whitening (see Section 2.1), a buffer
size of 256 samples, a silence threshold of -51.7 dB, and an onset
threshold of 1.18. On the test dataset, solution #d obtained an F1-
score of 97.33%, an IQR of 0.58 ms, an average latency of 6.0
ms, and lower and upper Tukey fences of respectively 4.8 and 7.2
ms. The results on the test set show that the chosen solution can
perform well on new data.

A different set of optimal solutions may need a different
choice, and the solution that has the best value according to a sin-
gle objective may not be the most desirable tradeoff.

5. CONCLUSIONS

In this paper, we presented a procedure for the optimization of
the performance of parametric onset detectors on a set of data of
interest. The procedure focuses on both improving the detection
accuracy, and reducing the latency measured between a true onset
and its reporting.

The proposed method was successfully applied to the onset
detectors of the Aubio library. An Evolutionary Computation al-
gorithm was used to perform automated single-objective optimiza-
tion of non-latency critical parameters, and it was compared to
manual optimization. The proposed procedure offered a large re-
duction in the required human effort with respect to manual op-
timization, while producing comparable results. The reduction in
the human effort required for optimization, along with the rather
short execution time of the proposed procedure, offers the possi-
bility of using larger datasets.

The F1-score values obtained with the evolutionary computa-
tion algorithm showed an average difference of 1.4 × 10−3 F1-
score points and a standard deviation of 1.2 × 10−2 with respect
to manual optimization. Moreover, the automated algorithm re-
quired 13 hours and 34 minutes to compute the best results, while
the meticulous manual procedure required over two working days
of human effort.

The procedure includes a subsequent step of multi-objective
optimization to account for the detection latency, which is per-
formed by defining the objectives of interest and finding the
Pareto-optimal solutions. Finally, the best tradeoff between the
optimized objectives is selected.

Using this procedure, we were able to significantly improve
the success rate of a real-time onset detector while reducing the
latency of detection. These improvements were measured on a
separate test dataset.

The use of only a sample of an audio dataset can be a limita-
tion: the proposed method could benefit from the use of the entire
dataset of interest, however, both human labeling and optimiza-
tion times would increase. Optimization in such situations can be
accelerated by reducing the exploration to more relevant parame-
ter ranges and increasing the number of parallel computations that
can be executed. A higher degree of parallelism can be exploited
by allowing the evolutionary algorithm to compute the fitness of
more than one individual simultaneously, on multiple processing
threads.

The proposed procedure is expected to extend to any paramet-
ric onset detector algorithm.
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